Metamath Proof Explorer


Theorem hashbcss

Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
Assertion hashbcss
|- ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( B C N ) C_ ( A C N ) )

Proof

Step Hyp Ref Expression
1 ramval.c
 |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
2 simp2
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> B C_ A )
3 2 sspwd
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ~P B C_ ~P A )
4 rabss2
 |-  ( ~P B C_ ~P A -> { x e. ~P B | ( # ` x ) = N } C_ { x e. ~P A | ( # ` x ) = N } )
5 3 4 syl
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> { x e. ~P B | ( # ` x ) = N } C_ { x e. ~P A | ( # ` x ) = N } )
6 simp1
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> A e. V )
7 6 2 ssexd
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> B e. _V )
8 simp3
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> N e. NN0 )
9 1 hashbcval
 |-  ( ( B e. _V /\ N e. NN0 ) -> ( B C N ) = { x e. ~P B | ( # ` x ) = N } )
10 7 8 9 syl2anc
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( B C N ) = { x e. ~P B | ( # ` x ) = N } )
11 1 hashbcval
 |-  ( ( A e. V /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } )
12 11 3adant2
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } )
13 5 10 12 3sstr4d
 |-  ( ( A e. V /\ B C_ A /\ N e. NN0 ) -> ( B C N ) C_ ( A C N ) )