Metamath Proof Explorer


Theorem hashbcss

Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c C=aV,i0b𝒫a|b=i
Assertion hashbcss AVBAN0BCNACN

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 simp2 AVBAN0BA
3 2 sspwd AVBAN0𝒫B𝒫A
4 rabss2 𝒫B𝒫Ax𝒫B|x=Nx𝒫A|x=N
5 3 4 syl AVBAN0x𝒫B|x=Nx𝒫A|x=N
6 simp1 AVBAN0AV
7 6 2 ssexd AVBAN0BV
8 simp3 AVBAN0N0
9 1 hashbcval BVN0BCN=x𝒫B|x=N
10 7 8 9 syl2anc AVBAN0BCN=x𝒫B|x=N
11 1 hashbcval AVN0ACN=x𝒫A|x=N
12 11 3adant2 AVBAN0ACN=x𝒫A|x=N
13 5 10 12 3sstr4d AVBAN0BCNACN