| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashfinmndnn.1 |
|- B = ( Base ` G ) |
| 2 |
|
hashfinmndnn.2 |
|- ( ph -> G e. Mnd ) |
| 3 |
|
hashfinmndnn.3 |
|- ( ph -> B e. Fin ) |
| 4 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 7 |
1 6
|
mndidcl |
|- ( G e. Mnd -> ( 0g ` G ) e. B ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( 0g ` G ) e. B ) |
| 9 |
8 3
|
hashelne0d |
|- ( ph -> -. ( # ` B ) = 0 ) |
| 10 |
9
|
neqned |
|- ( ph -> ( # ` B ) =/= 0 ) |
| 11 |
|
elnnne0 |
|- ( ( # ` B ) e. NN <-> ( ( # ` B ) e. NN0 /\ ( # ` B ) =/= 0 ) ) |
| 12 |
5 10 11
|
sylanbrc |
|- ( ph -> ( # ` B ) e. NN ) |