| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashp1i.1 |
|- A e. _om |
| 2 |
|
hashp1i.2 |
|- B = suc A |
| 3 |
|
hashp1i.3 |
|- ( # ` A ) = M |
| 4 |
|
hashp1i.4 |
|- ( M + 1 ) = N |
| 5 |
|
df-suc |
|- suc A = ( A u. { A } ) |
| 6 |
2 5
|
eqtri |
|- B = ( A u. { A } ) |
| 7 |
6
|
fveq2i |
|- ( # ` B ) = ( # ` ( A u. { A } ) ) |
| 8 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
| 9 |
1 8
|
ax-mp |
|- A e. Fin |
| 10 |
|
nnord |
|- ( A e. _om -> Ord A ) |
| 11 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
| 12 |
1 10 11
|
mp2b |
|- -. A e. A |
| 13 |
|
hashunsng |
|- ( A e. _om -> ( ( A e. Fin /\ -. A e. A ) -> ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) ) ) |
| 14 |
1 13
|
ax-mp |
|- ( ( A e. Fin /\ -. A e. A ) -> ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) ) |
| 15 |
9 12 14
|
mp2an |
|- ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) |
| 16 |
3
|
oveq1i |
|- ( ( # ` A ) + 1 ) = ( M + 1 ) |
| 17 |
16 4
|
eqtri |
|- ( ( # ` A ) + 1 ) = N |
| 18 |
15 17
|
eqtri |
|- ( # ` ( A u. { A } ) ) = N |
| 19 |
7 18
|
eqtri |
|- ( # ` B ) = N |