| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|- P = ( Base ` G ) |
| 2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
| 3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
| 4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
| 7 |
|
ishlg.g |
|- ( ph -> G e. V ) |
| 8 |
|
3ancoma |
|- ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( B =/= C /\ A =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) |
| 9 |
|
orcom |
|- ( ( A e. ( C I B ) \/ B e. ( C I A ) ) <-> ( B e. ( C I A ) \/ A e. ( C I B ) ) ) |
| 10 |
9
|
a1i |
|- ( ph -> ( ( A e. ( C I B ) \/ B e. ( C I A ) ) <-> ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) |
| 11 |
10
|
3anbi3d |
|- ( ph -> ( ( B =/= C /\ A =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( B =/= C /\ A =/= C /\ ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) ) |
| 12 |
8 11
|
bitrid |
|- ( ph -> ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( B =/= C /\ A =/= C /\ ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) ) |
| 13 |
1 2 3 4 5 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
| 14 |
1 2 3 5 4 6 7
|
ishlg |
|- ( ph -> ( B ( K ` C ) A <-> ( B =/= C /\ A =/= C /\ ( B e. ( C I A ) \/ A e. ( C I B ) ) ) ) ) |
| 15 |
12 13 14
|
3bitr4d |
|- ( ph -> ( A ( K ` C ) B <-> B ( K ` C ) A ) ) |