| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
ishlg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 8 |
|
3ancoma |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ↔ ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) |
| 9 |
|
orcom |
⊢ ( ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ↔ ( 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ↔ ( 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) ) |
| 11 |
10
|
3anbi3d |
⊢ ( 𝜑 → ( ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ↔ ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) ) ) |
| 12 |
8 11
|
bitrid |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ↔ ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) ) ) |
| 13 |
1 2 3 4 5 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
| 14 |
1 2 3 5 4 6 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ↔ ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) ) ) |
| 15 |
12 13 14
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ 𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ) ) |