| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | ishlg.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 8 |  | 3ancoma | ⊢ ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) | 
						
							| 9 |  | orcom | ⊢ ( ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  ↔  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) )  ↔  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) | 
						
							| 11 | 10 | 3anbi3d | ⊢ ( 𝜑  →  ( ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) ) | 
						
							| 12 | 8 11 | bitrid | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) ) | 
						
							| 14 | 1 2 3 5 4 6 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴  ↔  ( 𝐵  ≠  𝐶  ∧  𝐴  ≠  𝐶  ∧  ( 𝐵  ∈  ( 𝐶 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) ) | 
						
							| 15 | 12 13 14 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  𝐵 ( 𝐾 ‘ 𝐶 ) 𝐴 ) ) |