| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhillvec.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhillvec.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 3 |  | hlhillvec.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 4 |  | hlhildrng.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | eqid |  |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) | 
						
							| 6 | 1 5 | erngdv |  |-  ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> ( ( EDRing ` K ) ` W ) e. DivRing ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( Base ` ( ( EDRing ` K ) ` W ) ) = ( Base ` ( ( EDRing ` K ) ` W ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( ( EDRing ` K ) ` W ) ) = ( Base ` ( ( EDRing ` K ) ` W ) ) | 
						
							| 10 | 1 5 2 4 3 9 | hlhilsbase |  |-  ( ph -> ( Base ` ( ( EDRing ` K ) ` W ) ) = ( Base ` R ) ) | 
						
							| 11 |  | eqid |  |-  ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) ) | 
						
							| 12 | 1 5 2 4 3 11 | hlhilsplus |  |-  ( ph -> ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` R ) ) | 
						
							| 13 | 12 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( ( EDRing ` K ) ` W ) ) /\ y e. ( Base ` ( ( EDRing ` K ) ` W ) ) ) ) -> ( x ( +g ` ( ( EDRing ` K ) ` W ) ) y ) = ( x ( +g ` R ) y ) ) | 
						
							| 14 |  | eqid |  |-  ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` ( ( EDRing ` K ) ` W ) ) | 
						
							| 15 | 1 5 2 4 3 14 | hlhilsmul |  |-  ( ph -> ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` R ) ) | 
						
							| 16 | 15 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( ( EDRing ` K ) ` W ) ) /\ y e. ( Base ` ( ( EDRing ` K ) ` W ) ) ) ) -> ( x ( .r ` ( ( EDRing ` K ) ` W ) ) y ) = ( x ( .r ` R ) y ) ) | 
						
							| 17 | 8 10 13 16 | drngpropd |  |-  ( ph -> ( ( ( EDRing ` K ) ` W ) e. DivRing <-> R e. DivRing ) ) | 
						
							| 18 | 7 17 | mpbid |  |-  ( ph -> R e. DivRing ) |