Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillvec.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhillvec.u |
|- U = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhillvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
hlhildrng.r |
|- R = ( Scalar ` U ) |
5 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
6 |
1 5
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
7 |
3 6
|
syl |
|- ( ph -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
8 |
|
eqidd |
|- ( ph -> ( Base ` ( ( EDRing ` K ) ` W ) ) = ( Base ` ( ( EDRing ` K ) ` W ) ) ) |
9 |
|
eqid |
|- ( Base ` ( ( EDRing ` K ) ` W ) ) = ( Base ` ( ( EDRing ` K ) ` W ) ) |
10 |
1 5 2 4 3 9
|
hlhilsbase |
|- ( ph -> ( Base ` ( ( EDRing ` K ) ` W ) ) = ( Base ` R ) ) |
11 |
|
eqid |
|- ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) ) |
12 |
1 5 2 4 3 11
|
hlhilsplus |
|- ( ph -> ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` R ) ) |
13 |
12
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( ( EDRing ` K ) ` W ) ) /\ y e. ( Base ` ( ( EDRing ` K ) ` W ) ) ) ) -> ( x ( +g ` ( ( EDRing ` K ) ` W ) ) y ) = ( x ( +g ` R ) y ) ) |
14 |
|
eqid |
|- ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` ( ( EDRing ` K ) ` W ) ) |
15 |
1 5 2 4 3 14
|
hlhilsmul |
|- ( ph -> ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` R ) ) |
16 |
15
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( ( EDRing ` K ) ` W ) ) /\ y e. ( Base ` ( ( EDRing ` K ) ` W ) ) ) ) -> ( x ( .r ` ( ( EDRing ` K ) ` W ) ) y ) = ( x ( .r ` R ) y ) ) |
17 |
8 10 13 16
|
drngpropd |
|- ( ph -> ( ( ( EDRing ` K ) ` W ) e. DivRing <-> R e. DivRing ) ) |
18 |
7 17
|
mpbid |
|- ( ph -> R e. DivRing ) |