Metamath Proof Explorer


Theorem hlhildrng

Description: The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhillvec.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhillvec.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhillvec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhildrng.r 𝑅 = ( Scalar ‘ 𝑈 )
Assertion hlhildrng ( 𝜑𝑅 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 hlhillvec.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhillvec.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
3 hlhillvec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 hlhildrng.r 𝑅 = ( Scalar ‘ 𝑈 )
5 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
6 1 5 erngdv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing )
7 3 6 syl ( 𝜑 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing )
8 eqidd ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
9 eqid ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
10 1 5 2 4 3 9 hlhilsbase ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑅 ) )
11 eqid ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 5 2 4 3 11 hlhilsplus ( 𝜑 → ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g𝑅 ) )
13 12 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( +g𝑅 ) 𝑦 ) )
14 eqid ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
15 1 5 2 4 3 14 hlhilsmul ( 𝜑 → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r𝑅 ) )
16 15 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( .r𝑅 ) 𝑦 ) )
17 8 10 13 16 drngpropd ( 𝜑 → ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ↔ 𝑅 ∈ DivRing ) )
18 7 17 mpbid ( 𝜑𝑅 ∈ DivRing )