Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillvec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhillvec.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhillvec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
4 |
|
hlhildrng.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 5
|
erngdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
1 5 2 4 3 9
|
hlhilsbase |
⊢ ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
1 5 2 4 3 11
|
hlhilsplus |
⊢ ( 𝜑 → ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ 𝑅 ) ) |
13 |
12
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
14 |
|
eqid |
⊢ ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
1 5 2 4 3 14
|
hlhilsmul |
⊢ ( 𝜑 → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ 𝑅 ) ) |
16 |
15
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
17 |
8 10 13 16
|
drngpropd |
⊢ ( 𝜑 → ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ↔ 𝑅 ∈ DivRing ) ) |
18 |
7 17
|
mpbid |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |