| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhillvec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hlhillvec.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hlhillvec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 4 |
|
hlhildrng.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
1 5
|
erngdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 10 |
1 5 2 4 3 9
|
hlhilsbase |
⊢ ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑅 ) ) |
| 11 |
|
eqid |
⊢ ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
1 5 2 4 3 11
|
hlhilsplus |
⊢ ( 𝜑 → ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ 𝑅 ) ) |
| 13 |
12
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 14 |
|
eqid |
⊢ ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 15 |
1 5 2 4 3 14
|
hlhilsmul |
⊢ ( 𝜑 → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ 𝑅 ) ) |
| 16 |
15
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 17 |
8 10 13 16
|
drngpropd |
⊢ ( 𝜑 → ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ↔ 𝑅 ∈ DivRing ) ) |
| 18 |
7 17
|
mpbid |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |