Metamath Proof Explorer


Theorem ho01i

Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of Beran p. 95. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis ho0.1
|- T : ~H --> ~H
Assertion ho01i
|- ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> T = 0hop )

Proof

Step Hyp Ref Expression
1 ho0.1
 |-  T : ~H --> ~H
2 ffn
 |-  ( T : ~H --> ~H -> T Fn ~H )
3 1 2 ax-mp
 |-  T Fn ~H
4 ax-hv0cl
 |-  0h e. ~H
5 4 elexi
 |-  0h e. _V
6 5 fconst
 |-  ( ~H X. { 0h } ) : ~H --> { 0h }
7 ffn
 |-  ( ( ~H X. { 0h } ) : ~H --> { 0h } -> ( ~H X. { 0h } ) Fn ~H )
8 6 7 ax-mp
 |-  ( ~H X. { 0h } ) Fn ~H
9 eqfnfv
 |-  ( ( T Fn ~H /\ ( ~H X. { 0h } ) Fn ~H ) -> ( T = ( ~H X. { 0h } ) <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) )
10 3 8 9 mp2an
 |-  ( T = ( ~H X. { 0h } ) <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) )
11 df0op2
 |-  0hop = ( ~H X. 0H )
12 df-ch0
 |-  0H = { 0h }
13 12 xpeq2i
 |-  ( ~H X. 0H ) = ( ~H X. { 0h } )
14 11 13 eqtri
 |-  0hop = ( ~H X. { 0h } )
15 14 eqeq2i
 |-  ( T = 0hop <-> T = ( ~H X. { 0h } ) )
16 1 ffvelrni
 |-  ( x e. ~H -> ( T ` x ) e. ~H )
17 hial0
 |-  ( ( T ` x ) e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = 0h ) )
18 16 17 syl
 |-  ( x e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = 0h ) )
19 5 fvconst2
 |-  ( x e. ~H -> ( ( ~H X. { 0h } ) ` x ) = 0h )
20 19 eqeq2d
 |-  ( x e. ~H -> ( ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) <-> ( T ` x ) = 0h ) )
21 18 20 bitr4d
 |-  ( x e. ~H -> ( A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) ) )
22 21 ralbiia
 |-  ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> A. x e. ~H ( T ` x ) = ( ( ~H X. { 0h } ) ` x ) )
23 10 15 22 3bitr4ri
 |-  ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = 0 <-> T = 0hop )