| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 2 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 3 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 4 |
1 2 3
|
homffval |
|- ( Homf ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
| 5 |
|
0mpo0 |
|- ( ( ( Base ` C ) = (/) \/ ( Base ` C ) = (/) ) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) = (/) ) |
| 6 |
5
|
orcs |
|- ( ( Base ` C ) = (/) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) = (/) ) |
| 7 |
4 6
|
eqtrid |
|- ( ( Base ` C ) = (/) -> ( Homf ` C ) = (/) ) |
| 8 |
1 2
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 9 |
|
f0bi |
|- ( ( Homf ` C ) : (/) --> (/) <-> ( Homf ` C ) = (/) ) |
| 10 |
|
ffn |
|- ( ( Homf ` C ) : (/) --> (/) -> ( Homf ` C ) Fn (/) ) |
| 11 |
9 10
|
sylbir |
|- ( ( Homf ` C ) = (/) -> ( Homf ` C ) Fn (/) ) |
| 12 |
|
fndmu |
|- ( ( ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Homf ` C ) Fn (/) ) -> ( ( Base ` C ) X. ( Base ` C ) ) = (/) ) |
| 13 |
8 11 12
|
sylancr |
|- ( ( Homf ` C ) = (/) -> ( ( Base ` C ) X. ( Base ` C ) ) = (/) ) |
| 14 |
|
xpeq0 |
|- ( ( ( Base ` C ) X. ( Base ` C ) ) = (/) <-> ( ( Base ` C ) = (/) \/ ( Base ` C ) = (/) ) ) |
| 15 |
|
pm4.25 |
|- ( ( Base ` C ) = (/) <-> ( ( Base ` C ) = (/) \/ ( Base ` C ) = (/) ) ) |
| 16 |
14 15
|
bitr4i |
|- ( ( ( Base ` C ) X. ( Base ` C ) ) = (/) <-> ( Base ` C ) = (/) ) |
| 17 |
13 16
|
sylib |
|- ( ( Homf ` C ) = (/) -> ( Base ` C ) = (/) ) |
| 18 |
7 17
|
impbii |
|- ( ( Base ` C ) = (/) <-> ( Homf ` C ) = (/) ) |