| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosubcl |  |-  ( ( R : ~H --> ~H /\ S : ~H --> ~H ) -> ( R -op S ) : ~H --> ~H ) | 
						
							| 2 |  | hosubsub2 |  |-  ( ( ( R -op S ) : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( R -op S ) -op ( T -op U ) ) = ( ( R -op S ) +op ( U -op T ) ) ) | 
						
							| 3 | 2 | 3expb |  |-  ( ( ( R -op S ) : ~H --> ~H /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R -op S ) -op ( T -op U ) ) = ( ( R -op S ) +op ( U -op T ) ) ) | 
						
							| 4 | 1 3 | sylan |  |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R -op S ) -op ( T -op U ) ) = ( ( R -op S ) +op ( U -op T ) ) ) | 
						
							| 5 |  | hosub4 |  |-  ( ( ( R : ~H --> ~H /\ U : ~H --> ~H ) /\ ( S : ~H --> ~H /\ T : ~H --> ~H ) ) -> ( ( R +op U ) -op ( S +op T ) ) = ( ( R -op S ) +op ( U -op T ) ) ) | 
						
							| 6 | 5 | an42s |  |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R +op U ) -op ( S +op T ) ) = ( ( R -op S ) +op ( U -op T ) ) ) | 
						
							| 7 | 4 6 | eqtr4d |  |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R -op S ) -op ( T -op U ) ) = ( ( R +op U ) -op ( S +op T ) ) ) |