Metamath Proof Explorer


Theorem hosubadd4

Description: Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubadd4 R:S:T:U:R-opS-opT-opU=R+opU-opS+opT

Proof

Step Hyp Ref Expression
1 hosubcl R:S:R-opS:
2 hosubsub2 R-opS:T:U:R-opS-opT-opU=R-opS+opU-opT
3 2 3expb R-opS:T:U:R-opS-opT-opU=R-opS+opU-opT
4 1 3 sylan R:S:T:U:R-opS-opT-opU=R-opS+opU-opT
5 hosub4 R:U:S:T:R+opU-opS+opT=R-opS+opU-opT
6 5 an42s R:S:T:U:R+opU-opS+opT=R-opS+opU-opT
7 4 6 eqtr4d R:S:T:U:R-opS-opT-opU=R+opU-opS+opT