Metamath Proof Explorer


Theorem hosub4

Description: Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosub4 R:S:T:U:R+opS-opT+opU=R-opT+opS-opU

Proof

Step Hyp Ref Expression
1 honegdi T:U:-1·opT+opU=-1·opT+op-1·opU
2 1 adantl R:S:T:U:-1·opT+opU=-1·opT+op-1·opU
3 2 oveq2d R:S:T:U:R+opS+op-1·opT+opU=R+opS+op-1·opT+op-1·opU
4 neg1cn 1
5 homulcl 1T:-1·opT:
6 4 5 mpan T:-1·opT:
7 homulcl 1U:-1·opU:
8 4 7 mpan U:-1·opU:
9 6 8 anim12i T:U:-1·opT:-1·opU:
10 hoadd4 R:S:-1·opT:-1·opU:R+opS+op-1·opT+op-1·opU=R+op-1·opT+opS+op-1·opU
11 9 10 sylan2 R:S:T:U:R+opS+op-1·opT+op-1·opU=R+op-1·opT+opS+op-1·opU
12 3 11 eqtrd R:S:T:U:R+opS+op-1·opT+opU=R+op-1·opT+opS+op-1·opU
13 hoaddcl R:S:R+opS:
14 hoaddcl T:U:T+opU:
15 honegsub R+opS:T+opU:R+opS+op-1·opT+opU=R+opS-opT+opU
16 13 14 15 syl2an R:S:T:U:R+opS+op-1·opT+opU=R+opS-opT+opU
17 honegsub R:T:R+op-1·opT=R-opT
18 17 ad2ant2r R:S:T:U:R+op-1·opT=R-opT
19 honegsub S:U:S+op-1·opU=S-opU
20 19 ad2ant2l R:S:T:U:S+op-1·opU=S-opU
21 18 20 oveq12d R:S:T:U:R+op-1·opT+opS+op-1·opU=R-opT+opS-opU
22 12 16 21 3eqtr3d R:S:T:U:R+opS-opT+opU=R-opT+opS-opU