Metamath Proof Explorer


Theorem hoadd4

Description: Rearrangement of 4 terms in a sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoadd4 R:S:T:U:R+opS+opT+opU=R+opT+opS+opU

Proof

Step Hyp Ref Expression
1 hoadd32 R:S:T:R+opS+opT=R+opT+opS
2 1 oveq1d R:S:T:R+opS+opT+opU=R+opT+opS+opU
3 2 3expa R:S:T:R+opS+opT+opU=R+opT+opS+opU
4 3 adantrr R:S:T:U:R+opS+opT+opU=R+opT+opS+opU
5 hoaddcl R:S:R+opS:
6 hoaddass R+opS:T:U:R+opS+opT+opU=R+opS+opT+opU
7 6 3expb R+opS:T:U:R+opS+opT+opU=R+opS+opT+opU
8 5 7 sylan R:S:T:U:R+opS+opT+opU=R+opS+opT+opU
9 hoaddcl R:T:R+opT:
10 hoaddass R+opT:S:U:R+opT+opS+opU=R+opT+opS+opU
11 10 3expb R+opT:S:U:R+opT+opS+opU=R+opT+opS+opU
12 9 11 sylan R:T:S:U:R+opT+opS+opU=R+opT+opS+opU
13 12 an4s R:S:T:U:R+opT+opS+opU=R+opT+opS+opU
14 4 8 13 3eqtr3d R:S:T:U:R+opS+opT+opU=R+opT+opS+opU