Metamath Proof Explorer


Theorem hoaddass

Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoaddass R:S:T:R+opS+opT=R+opS+opT

Proof

Step Hyp Ref Expression
1 oveq1 R=ifR:R0hopR+opS=ifR:R0hop+opS
2 1 oveq1d R=ifR:R0hopR+opS+opT=ifR:R0hop+opS+opT
3 oveq1 R=ifR:R0hopR+opS+opT=ifR:R0hop+opS+opT
4 2 3 eqeq12d R=ifR:R0hopR+opS+opT=R+opS+opTifR:R0hop+opS+opT=ifR:R0hop+opS+opT
5 oveq2 S=ifS:S0hopifR:R0hop+opS=ifR:R0hop+opifS:S0hop
6 5 oveq1d S=ifS:S0hopifR:R0hop+opS+opT=ifR:R0hop+opifS:S0hop+opT
7 oveq1 S=ifS:S0hopS+opT=ifS:S0hop+opT
8 7 oveq2d S=ifS:S0hopifR:R0hop+opS+opT=ifR:R0hop+opifS:S0hop+opT
9 6 8 eqeq12d S=ifS:S0hopifR:R0hop+opS+opT=ifR:R0hop+opS+opTifR:R0hop+opifS:S0hop+opT=ifR:R0hop+opifS:S0hop+opT
10 oveq2 T=ifT:T0hopifR:R0hop+opifS:S0hop+opT=ifR:R0hop+opifS:S0hop+opifT:T0hop
11 oveq2 T=ifT:T0hopifS:S0hop+opT=ifS:S0hop+opifT:T0hop
12 11 oveq2d T=ifT:T0hopifR:R0hop+opifS:S0hop+opT=ifR:R0hop+opifS:S0hop+opifT:T0hop
13 10 12 eqeq12d T=ifT:T0hopifR:R0hop+opifS:S0hop+opT=ifR:R0hop+opifS:S0hop+opTifR:R0hop+opifS:S0hop+opifT:T0hop=ifR:R0hop+opifS:S0hop+opifT:T0hop
14 ho0f 0hop:
15 14 elimf ifR:R0hop:
16 14 elimf ifS:S0hop:
17 14 elimf ifT:T0hop:
18 15 16 17 hoaddassi ifR:R0hop+opifS:S0hop+opifT:T0hop=ifR:R0hop+opifS:S0hop+opifT:T0hop
19 4 9 13 18 dedth3h R:S:T:R+opS+opT=R+opS+opT