Metamath Proof Explorer


Theorem hoadd4

Description: Rearrangement of 4 terms in a sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoadd4
|- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R +op S ) +op ( T +op U ) ) = ( ( R +op T ) +op ( S +op U ) ) )

Proof

Step Hyp Ref Expression
1 hoadd32
 |-  ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( ( R +op T ) +op S ) )
2 1 oveq1d
 |-  ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( ( R +op T ) +op S ) +op U ) )
3 2 3expa
 |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ T : ~H --> ~H ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( ( R +op T ) +op S ) +op U ) )
4 3 adantrr
 |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( ( R +op T ) +op S ) +op U ) )
5 hoaddcl
 |-  ( ( R : ~H --> ~H /\ S : ~H --> ~H ) -> ( R +op S ) : ~H --> ~H )
6 hoaddass
 |-  ( ( ( R +op S ) : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( R +op S ) +op ( T +op U ) ) )
7 6 3expb
 |-  ( ( ( R +op S ) : ~H --> ~H /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( R +op S ) +op ( T +op U ) ) )
8 5 7 sylan
 |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( R +op S ) +op ( T +op U ) ) )
9 hoaddcl
 |-  ( ( R : ~H --> ~H /\ T : ~H --> ~H ) -> ( R +op T ) : ~H --> ~H )
10 hoaddass
 |-  ( ( ( R +op T ) : ~H --> ~H /\ S : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) )
11 10 3expb
 |-  ( ( ( R +op T ) : ~H --> ~H /\ ( S : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) )
12 9 11 sylan
 |-  ( ( ( R : ~H --> ~H /\ T : ~H --> ~H ) /\ ( S : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) )
13 12 an4s
 |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) )
14 4 8 13 3eqtr3d
 |-  ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R +op S ) +op ( T +op U ) ) = ( ( R +op T ) +op ( S +op U ) ) )