| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishpg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishpg.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | ishpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | ishpg.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | ishpg.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | hpgbr.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | hpgbr.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | hpgne1.1 |  |-  ( ph -> A ( ( hpG ` G ) ` D ) B ) | 
						
							| 10 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 11 | 6 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> D e. ran L ) | 
						
							| 12 | 5 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> G e. TarskiG ) | 
						
							| 13 | 8 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B e. P ) | 
						
							| 14 |  | simplr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> c e. P ) | 
						
							| 15 |  | simprr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B O c ) | 
						
							| 16 | 1 10 2 4 3 11 12 13 14 15 | oppne1 |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> -. B e. D ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | hpgbr |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) | 
						
							| 18 | 9 17 | mpbid |  |-  ( ph -> E. c e. P ( A O c /\ B O c ) ) | 
						
							| 19 | 16 18 | r19.29a |  |-  ( ph -> -. B e. D ) |