| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishpg.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | ishpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | ishpg.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | ishpg.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | hpgbr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 8 |  | hpgbr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | hpgne1.1 | ⊢ ( 𝜑  →  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 11 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 12 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 13 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) )  →  𝑐  ∈  𝑃 ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) )  →  𝐵 𝑂 𝑐 ) | 
						
							| 16 | 1 10 2 4 3 11 12 13 14 15 | oppne1 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) )  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | hpgbr | ⊢ ( 𝜑  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) | 
						
							| 18 | 9 17 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) | 
						
							| 19 | 16 18 | r19.29a | ⊢ ( 𝜑  →  ¬  𝐵  ∈  𝐷 ) |