Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hstrlem2.1 | |- S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) |
|
Assertion | hstrlem2 | |- ( C e. CH -> ( S ` C ) = ( ( projh ` C ) ` u ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstrlem2.1 | |- S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) |
|
2 | fveq2 | |- ( x = C -> ( projh ` x ) = ( projh ` C ) ) |
|
3 | 2 | fveq1d | |- ( x = C -> ( ( projh ` x ) ` u ) = ( ( projh ` C ) ` u ) ) |
4 | fvex | |- ( ( projh ` C ) ` u ) e. _V |
|
5 | 3 1 4 | fvmpt | |- ( C e. CH -> ( S ` C ) = ( ( projh ` C ) ` u ) ) |