| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3a.1 |  |-  S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) | 
						
							| 2 |  | pjhcl |  |-  ( ( x e. CH /\ u e. ~H ) -> ( ( projh ` x ) ` u ) e. ~H ) | 
						
							| 3 | 2 | ancoms |  |-  ( ( u e. ~H /\ x e. CH ) -> ( ( projh ` x ) ` u ) e. ~H ) | 
						
							| 4 | 3 | adantlr |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( projh ` x ) ` u ) e. ~H ) | 
						
							| 5 | 4 1 | fmptd |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S : CH --> ~H ) | 
						
							| 6 |  | helch |  |-  ~H e. CH | 
						
							| 7 | 1 | hstrlem2 |  |-  ( ~H e. CH -> ( S ` ~H ) = ( ( projh ` ~H ) ` u ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( S ` ~H ) = ( ( projh ` ~H ) ` u ) | 
						
							| 9 | 8 | fveq2i |  |-  ( normh ` ( S ` ~H ) ) = ( normh ` ( ( projh ` ~H ) ` u ) ) | 
						
							| 10 |  | pjch1 |  |-  ( u e. ~H -> ( ( projh ` ~H ) ` u ) = u ) | 
						
							| 11 | 10 | fveq2d |  |-  ( u e. ~H -> ( normh ` ( ( projh ` ~H ) ` u ) ) = ( normh ` u ) ) | 
						
							| 12 |  | id |  |-  ( ( normh ` u ) = 1 -> ( normh ` u ) = 1 ) | 
						
							| 13 | 11 12 | sylan9eq |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( normh ` ( ( projh ` ~H ) ` u ) ) = 1 ) | 
						
							| 14 | 9 13 | eqtrid |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( normh ` ( S ` ~H ) ) = 1 ) | 
						
							| 15 | 1 | hstrlem2 |  |-  ( z e. CH -> ( S ` z ) = ( ( projh ` z ) ` u ) ) | 
						
							| 16 | 1 | hstrlem2 |  |-  ( w e. CH -> ( S ` w ) = ( ( projh ` w ) ` u ) ) | 
						
							| 17 | 15 16 | oveqan12d |  |-  ( ( z e. CH /\ w e. CH ) -> ( ( S ` z ) .ih ( S ` w ) ) = ( ( ( projh ` z ) ` u ) .ih ( ( projh ` w ) ` u ) ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( ( S ` z ) .ih ( S ` w ) ) = ( ( ( projh ` z ) ` u ) .ih ( ( projh ` w ) ` u ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( S ` z ) .ih ( S ` w ) ) = ( ( ( projh ` z ) ` u ) .ih ( ( projh ` w ) ` u ) ) ) | 
						
							| 20 |  | pjoi0 |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( ( projh ` z ) ` u ) .ih ( ( projh ` w ) ` u ) ) = 0 ) | 
						
							| 21 | 19 20 | eqtrd |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( S ` z ) .ih ( S ` w ) ) = 0 ) | 
						
							| 22 |  | pjcjt2 |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) | 
						
							| 24 |  | chjcl |  |-  ( ( z e. CH /\ w e. CH ) -> ( z vH w ) e. CH ) | 
						
							| 25 | 1 | hstrlem2 |  |-  ( ( z vH w ) e. CH -> ( S ` ( z vH w ) ) = ( ( projh ` ( z vH w ) ) ` u ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( z e. CH /\ w e. CH ) -> ( S ` ( z vH w ) ) = ( ( projh ` ( z vH w ) ) ` u ) ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( S ` ( z vH w ) ) = ( ( projh ` ( z vH w ) ) ` u ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( projh ` ( z vH w ) ) ` u ) ) | 
						
							| 29 | 15 16 | oveqan12d |  |-  ( ( z e. CH /\ w e. CH ) -> ( ( S ` z ) +h ( S ` w ) ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) | 
						
							| 30 | 29 | 3adant3 |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( ( S ` z ) +h ( S ` w ) ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( S ` z ) +h ( S ` w ) ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) | 
						
							| 32 | 23 28 31 | 3eqtr4d |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) | 
						
							| 33 | 21 32 | jca |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) | 
						
							| 34 | 33 | 3exp1 |  |-  ( z e. CH -> ( w e. CH -> ( u e. ~H -> ( z C_ ( _|_ ` w ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) ) ) ) | 
						
							| 35 | 34 | com3r |  |-  ( u e. ~H -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) ) ) ) | 
						
							| 37 | 36 | ralrimdv |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> A. w e. CH ( z C_ ( _|_ ` w ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) ) ) | 
						
							| 38 | 37 | ralrimiv |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) ) | 
						
							| 39 |  | ishst |  |-  ( S e. CHStates <-> ( S : CH --> ~H /\ ( normh ` ( S ` ~H ) ) = 1 /\ A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( ( ( S ` z ) .ih ( S ` w ) ) = 0 /\ ( S ` ( z vH w ) ) = ( ( S ` z ) +h ( S ` w ) ) ) ) ) ) | 
						
							| 40 | 5 14 38 39 | syl3anbrc |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. CHStates ) |