Metamath Proof Explorer


Theorem hstrlem3

Description: Lemma for strong set of CH states theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1
|- S = ( x e. CH |-> ( ( projh ` x ) ` u ) )
hstrlem3.2
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
hstrlem3.3
|- A e. CH
hstrlem3.4
|- B e. CH
Assertion hstrlem3
|- ( ph -> S e. CHStates )

Proof

Step Hyp Ref Expression
1 hstrlem3.1
 |-  S = ( x e. CH |-> ( ( projh ` x ) ` u ) )
2 hstrlem3.2
 |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
3 hstrlem3.3
 |-  A e. CH
4 hstrlem3.4
 |-  B e. CH
5 eldifi
 |-  ( u e. ( A \ B ) -> u e. A )
6 3 cheli
 |-  ( u e. A -> u e. ~H )
7 5 6 syl
 |-  ( u e. ( A \ B ) -> u e. ~H )
8 1 hstrlem3a
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. CHStates )
9 7 8 sylan
 |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> S e. CHStates )
10 2 9 sylbi
 |-  ( ph -> S e. CHStates )