Metamath Proof Explorer


Theorem hstrlem3

Description: Lemma for strong set of CH states theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1 𝑆 = ( 𝑥C ↦ ( ( proj𝑥 ) ‘ 𝑢 ) )
hstrlem3.2 ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴𝐵 ) ∧ ( norm𝑢 ) = 1 ) )
hstrlem3.3 𝐴C
hstrlem3.4 𝐵C
Assertion hstrlem3 ( 𝜑𝑆 ∈ CHStates )

Proof

Step Hyp Ref Expression
1 hstrlem3.1 𝑆 = ( 𝑥C ↦ ( ( proj𝑥 ) ‘ 𝑢 ) )
2 hstrlem3.2 ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴𝐵 ) ∧ ( norm𝑢 ) = 1 ) )
3 hstrlem3.3 𝐴C
4 hstrlem3.4 𝐵C
5 eldifi ( 𝑢 ∈ ( 𝐴𝐵 ) → 𝑢𝐴 )
6 3 cheli ( 𝑢𝐴𝑢 ∈ ℋ )
7 5 6 syl ( 𝑢 ∈ ( 𝐴𝐵 ) → 𝑢 ∈ ℋ )
8 1 hstrlem3a ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → 𝑆 ∈ CHStates )
9 7 8 sylan ( ( 𝑢 ∈ ( 𝐴𝐵 ) ∧ ( norm𝑢 ) = 1 ) → 𝑆 ∈ CHStates )
10 2 9 sylbi ( 𝜑𝑆 ∈ CHStates )