| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) | 
						
							| 2 |  | hstrlem3.2 | ⊢ ( 𝜑  ↔  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 ) ) | 
						
							| 3 |  | hstrlem3.3 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 4 |  | hstrlem3.4 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 5 | 1 | hstrlem2 | ⊢ ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  =  ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) | 
						
							| 6 | 3 5 | ax-mp | ⊢ ( 𝑆 ‘ 𝐴 )  =  ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) | 
						
							| 7 | 6 | fveq2i | ⊢ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) | 
						
							| 8 |  | eldifi | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  𝑢  ∈  𝐴 ) | 
						
							| 9 |  | pjid | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑢  ∈  𝐴 )  →  ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 )  =  𝑢 ) | 
						
							| 10 | 3 9 | mpan | ⊢ ( 𝑢  ∈  𝐴  →  ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 )  =  𝑢 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑢  ∈  𝐴  →  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 ) ) | 
						
							| 12 |  | eqeq2 | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 13 | 11 12 | imbitrid | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( 𝑢  ∈  𝐴  →  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 14 | 8 13 | mpan9 | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) | 
						
							| 15 | 2 14 | sylbi | ⊢ ( 𝜑  →  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) | 
						
							| 16 | 7 15 | eqtrid | ⊢ ( 𝜑  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 ) |