Step |
Hyp |
Ref |
Expression |
1 |
|
hstrlem3.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) |
2 |
|
hstrlem3.2 |
⊢ ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) ) |
3 |
|
hstrlem3.3 |
⊢ 𝐴 ∈ Cℋ |
4 |
|
hstrlem3.4 |
⊢ 𝐵 ∈ Cℋ |
5 |
1
|
hstrlem2 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) = ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) |
6 |
3 5
|
ax-mp |
⊢ ( 𝑆 ‘ 𝐴 ) = ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) |
7 |
6
|
fveq2i |
⊢ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) |
8 |
|
eldifi |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑢 ∈ 𝐴 ) |
9 |
|
pjid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑢 ∈ 𝐴 ) → ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) = 𝑢 ) |
10 |
3 9
|
mpan |
⊢ ( 𝑢 ∈ 𝐴 → ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) = 𝑢 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑢 ∈ 𝐴 → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ) |
12 |
|
eqeq2 |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
13 |
11 12
|
syl5ib |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( 𝑢 ∈ 𝐴 → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
14 |
8 13
|
mpan9 |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) |
15 |
2 14
|
sylbi |
⊢ ( 𝜑 → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) |
16 |
7 15
|
syl5eq |
⊢ ( 𝜑 → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) |