Metamath Proof Explorer


Theorem hstrlem4

Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1 S = x C proj x u
hstrlem3.2 φ u A B norm u = 1
hstrlem3.3 A C
hstrlem3.4 B C
Assertion hstrlem4 φ norm S A = 1

Proof

Step Hyp Ref Expression
1 hstrlem3.1 S = x C proj x u
2 hstrlem3.2 φ u A B norm u = 1
3 hstrlem3.3 A C
4 hstrlem3.4 B C
5 1 hstrlem2 A C S A = proj A u
6 3 5 ax-mp S A = proj A u
7 6 fveq2i norm S A = norm proj A u
8 eldifi u A B u A
9 pjid A C u A proj A u = u
10 3 9 mpan u A proj A u = u
11 10 fveq2d u A norm proj A u = norm u
12 eqeq2 norm u = 1 norm proj A u = norm u norm proj A u = 1
13 11 12 syl5ib norm u = 1 u A norm proj A u = 1
14 8 13 mpan9 u A B norm u = 1 norm proj A u = 1
15 2 14 sylbi φ norm proj A u = 1
16 7 15 syl5eq φ norm S A = 1