Metamath Proof Explorer


Theorem hstrlem5

Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1 S=xCprojxu
hstrlem3.2 φuABnormu=1
hstrlem3.3 AC
hstrlem3.4 BC
Assertion hstrlem5 φnormSB<1

Proof

Step Hyp Ref Expression
1 hstrlem3.1 S=xCprojxu
2 hstrlem3.2 φuABnormu=1
3 hstrlem3.3 AC
4 hstrlem3.4 BC
5 1 hstrlem2 BCSB=projBu
6 5 fveq2d BCnormSB=normprojBu
7 4 6 ax-mp normSB=normprojBu
8 eldif uABuA¬uB
9 3 cheli uAu
10 pjnel BCu¬uBnormprojBu<normu
11 4 10 mpan u¬uBnormprojBu<normu
12 11 biimpa u¬uBnormprojBu<normu
13 9 12 sylan uA¬uBnormprojBu<normu
14 8 13 sylbi uABnormprojBu<normu
15 breq2 normu=1normprojBu<normunormprojBu<1
16 14 15 imbitrid normu=1uABnormprojBu<1
17 16 impcom uABnormu=1normprojBu<1
18 7 17 eqbrtrid uABnormu=1normSB<1
19 2 18 sylbi φnormSB<1