Step |
Hyp |
Ref |
Expression |
1 |
|
hstrlem3.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) |
2 |
|
hstrlem3.2 |
⊢ ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) ) |
3 |
|
hstrlem3.3 |
⊢ 𝐴 ∈ Cℋ |
4 |
|
hstrlem3.4 |
⊢ 𝐵 ∈ Cℋ |
5 |
1
|
hstrlem2 |
⊢ ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) = ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝐵 ∈ Cℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) |
7 |
4 6
|
ax-mp |
⊢ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) |
8 |
|
eldif |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵 ) ) |
9 |
3
|
cheli |
⊢ ( 𝑢 ∈ 𝐴 → 𝑢 ∈ ℋ ) |
10 |
|
pjnel |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑢 ∈ ℋ ) → ( ¬ 𝑢 ∈ 𝐵 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) ) |
11 |
4 10
|
mpan |
⊢ ( 𝑢 ∈ ℋ → ( ¬ 𝑢 ∈ 𝐵 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝑢 ∈ ℋ ∧ ¬ 𝑢 ∈ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) |
13 |
9 12
|
sylan |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) |
14 |
8 13
|
sylbi |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) |
15 |
|
breq2 |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ) ) |
16 |
14 15
|
syl5ib |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ) |
18 |
7 17
|
eqbrtrid |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) < 1 ) |
19 |
2 18
|
sylbi |
⊢ ( 𝜑 → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) < 1 ) |