| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) | 
						
							| 2 |  | hstrlem3.2 | ⊢ ( 𝜑  ↔  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 ) ) | 
						
							| 3 |  | hstrlem3.3 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 4 |  | hstrlem3.4 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 5 | 1 | hstrlem2 | ⊢ ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  =  ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝐵  ∈   Cℋ   →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) | 
						
							| 7 | 4 6 | ax-mp | ⊢ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) | 
						
							| 8 |  | eldif | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ∈  𝐵 ) ) | 
						
							| 9 | 3 | cheli | ⊢ ( 𝑢  ∈  𝐴  →  𝑢  ∈   ℋ ) | 
						
							| 10 |  | pjnel | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( ¬  𝑢  ∈  𝐵  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 11 | 4 10 | mpan | ⊢ ( 𝑢  ∈   ℋ  →  ( ¬  𝑢  ∈  𝐵  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ¬  𝑢  ∈  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) | 
						
							| 13 | 9 12 | sylan | ⊢ ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ∈  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) | 
						
							| 14 | 8 13 | sylbi | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) | 
						
							| 15 |  | breq2 | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1 ) ) | 
						
							| 16 | 14 15 | imbitrid | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1 ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1 ) | 
						
							| 18 | 7 17 | eqbrtrid | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  <  1 ) | 
						
							| 19 | 2 18 | sylbi | ⊢ ( 𝜑  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  <  1 ) |