Step |
Hyp |
Ref |
Expression |
1 |
|
hstrlem3.1 |
|- S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) |
2 |
|
hstrlem3.2 |
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) |
3 |
|
hstrlem3.3 |
|- A e. CH |
4 |
|
hstrlem3.4 |
|- B e. CH |
5 |
1
|
hstrlem2 |
|- ( B e. CH -> ( S ` B ) = ( ( projh ` B ) ` u ) ) |
6 |
5
|
fveq2d |
|- ( B e. CH -> ( normh ` ( S ` B ) ) = ( normh ` ( ( projh ` B ) ` u ) ) ) |
7 |
4 6
|
ax-mp |
|- ( normh ` ( S ` B ) ) = ( normh ` ( ( projh ` B ) ` u ) ) |
8 |
|
eldif |
|- ( u e. ( A \ B ) <-> ( u e. A /\ -. u e. B ) ) |
9 |
3
|
cheli |
|- ( u e. A -> u e. ~H ) |
10 |
|
pjnel |
|- ( ( B e. CH /\ u e. ~H ) -> ( -. u e. B <-> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) ) |
11 |
4 10
|
mpan |
|- ( u e. ~H -> ( -. u e. B <-> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) ) |
12 |
11
|
biimpa |
|- ( ( u e. ~H /\ -. u e. B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) |
13 |
9 12
|
sylan |
|- ( ( u e. A /\ -. u e. B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) |
14 |
8 13
|
sylbi |
|- ( u e. ( A \ B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) |
15 |
|
breq2 |
|- ( ( normh ` u ) = 1 -> ( ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) <-> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) ) |
16 |
14 15
|
syl5ib |
|- ( ( normh ` u ) = 1 -> ( u e. ( A \ B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) ) |
17 |
16
|
impcom |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) |
18 |
7 17
|
eqbrtrid |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( normh ` ( S ` B ) ) < 1 ) |
19 |
2 18
|
sylbi |
|- ( ph -> ( normh ` ( S ` B ) ) < 1 ) |