Metamath Proof Explorer


Theorem hstrlem5

Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1
|- S = ( x e. CH |-> ( ( projh ` x ) ` u ) )
hstrlem3.2
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
hstrlem3.3
|- A e. CH
hstrlem3.4
|- B e. CH
Assertion hstrlem5
|- ( ph -> ( normh ` ( S ` B ) ) < 1 )

Proof

Step Hyp Ref Expression
1 hstrlem3.1
 |-  S = ( x e. CH |-> ( ( projh ` x ) ` u ) )
2 hstrlem3.2
 |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
3 hstrlem3.3
 |-  A e. CH
4 hstrlem3.4
 |-  B e. CH
5 1 hstrlem2
 |-  ( B e. CH -> ( S ` B ) = ( ( projh ` B ) ` u ) )
6 5 fveq2d
 |-  ( B e. CH -> ( normh ` ( S ` B ) ) = ( normh ` ( ( projh ` B ) ` u ) ) )
7 4 6 ax-mp
 |-  ( normh ` ( S ` B ) ) = ( normh ` ( ( projh ` B ) ` u ) )
8 eldif
 |-  ( u e. ( A \ B ) <-> ( u e. A /\ -. u e. B ) )
9 3 cheli
 |-  ( u e. A -> u e. ~H )
10 pjnel
 |-  ( ( B e. CH /\ u e. ~H ) -> ( -. u e. B <-> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) )
11 4 10 mpan
 |-  ( u e. ~H -> ( -. u e. B <-> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) )
12 11 biimpa
 |-  ( ( u e. ~H /\ -. u e. B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) )
13 9 12 sylan
 |-  ( ( u e. A /\ -. u e. B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) )
14 8 13 sylbi
 |-  ( u e. ( A \ B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) )
15 breq2
 |-  ( ( normh ` u ) = 1 -> ( ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) <-> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) )
16 14 15 syl5ib
 |-  ( ( normh ` u ) = 1 -> ( u e. ( A \ B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) )
17 16 impcom
 |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( normh ` ( ( projh ` B ) ` u ) ) < 1 )
18 7 17 eqbrtrid
 |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( normh ` ( S ` B ) ) < 1 )
19 2 18 sylbi
 |-  ( ph -> ( normh ` ( S ` B ) ) < 1 )