| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstrlem3.1 |
|- S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) |
| 2 |
|
hstrlem3.2 |
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) |
| 3 |
|
hstrlem3.3 |
|- A e. CH |
| 4 |
|
hstrlem3.4 |
|- B e. CH |
| 5 |
1 2 3 4
|
hstrlem4 |
|- ( ph -> ( normh ` ( S ` A ) ) = 1 ) |
| 6 |
1 2 3 4
|
hstrlem3 |
|- ( ph -> S e. CHStates ) |
| 7 |
|
hstcl |
|- ( ( S e. CHStates /\ B e. CH ) -> ( S ` B ) e. ~H ) |
| 8 |
6 4 7
|
sylancl |
|- ( ph -> ( S ` B ) e. ~H ) |
| 9 |
|
normcl |
|- ( ( S ` B ) e. ~H -> ( normh ` ( S ` B ) ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( normh ` ( S ` B ) ) e. RR ) |
| 11 |
1 2 3 4
|
hstrlem5 |
|- ( ph -> ( normh ` ( S ` B ) ) < 1 ) |
| 12 |
10 11
|
ltned |
|- ( ph -> ( normh ` ( S ` B ) ) =/= 1 ) |
| 13 |
12
|
neneqd |
|- ( ph -> -. ( normh ` ( S ` B ) ) = 1 ) |
| 14 |
5 13
|
jcnd |
|- ( ph -> -. ( ( normh ` ( S ` A ) ) = 1 -> ( normh ` ( S ` B ) ) = 1 ) ) |