Metamath Proof Explorer


Theorem hstrlem6

Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1
|- S = ( x e. CH |-> ( ( projh ` x ) ` u ) )
hstrlem3.2
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
hstrlem3.3
|- A e. CH
hstrlem3.4
|- B e. CH
Assertion hstrlem6
|- ( ph -> -. ( ( normh ` ( S ` A ) ) = 1 -> ( normh ` ( S ` B ) ) = 1 ) )

Proof

Step Hyp Ref Expression
1 hstrlem3.1
 |-  S = ( x e. CH |-> ( ( projh ` x ) ` u ) )
2 hstrlem3.2
 |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
3 hstrlem3.3
 |-  A e. CH
4 hstrlem3.4
 |-  B e. CH
5 1 2 3 4 hstrlem4
 |-  ( ph -> ( normh ` ( S ` A ) ) = 1 )
6 1 2 3 4 hstrlem3
 |-  ( ph -> S e. CHStates )
7 hstcl
 |-  ( ( S e. CHStates /\ B e. CH ) -> ( S ` B ) e. ~H )
8 6 4 7 sylancl
 |-  ( ph -> ( S ` B ) e. ~H )
9 normcl
 |-  ( ( S ` B ) e. ~H -> ( normh ` ( S ` B ) ) e. RR )
10 8 9 syl
 |-  ( ph -> ( normh ` ( S ` B ) ) e. RR )
11 1 2 3 4 hstrlem5
 |-  ( ph -> ( normh ` ( S ` B ) ) < 1 )
12 10 11 ltned
 |-  ( ph -> ( normh ` ( S ` B ) ) =/= 1 )
13 12 neneqd
 |-  ( ph -> -. ( normh ` ( S ` B ) ) = 1 )
14 5 13 jcnd
 |-  ( ph -> -. ( ( normh ` ( S ` A ) ) = 1 -> ( normh ` ( S ` B ) ) = 1 ) )