| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstr.1 |  |-  A e. CH | 
						
							| 2 |  | hstr.2 |  |-  B e. CH | 
						
							| 3 |  | dfral2 |  |-  ( A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> -. E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 4 | 1 2 | strlem1 |  |-  ( -. A C_ B -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) | 
						
							| 5 |  | eqid |  |-  ( x e. CH |-> ( ( projh ` x ) ` u ) ) = ( x e. CH |-> ( ( projh ` x ) ` u ) ) | 
						
							| 6 |  | biid |  |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) | 
						
							| 7 | 5 6 1 2 | hstrlem3 |  |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( x e. CH |-> ( ( projh ` x ) ` u ) ) e. CHStates ) | 
						
							| 8 | 5 6 1 2 | hstrlem6 |  |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> -. ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) | 
						
							| 9 |  | fveq1 |  |-  ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( f ` A ) = ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) | 
						
							| 10 | 9 | fveqeq2d |  |-  ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( ( normh ` ( f ` A ) ) = 1 <-> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 ) ) | 
						
							| 11 |  | fveq1 |  |-  ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( f ` B ) = ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) | 
						
							| 12 | 11 | fveqeq2d |  |-  ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( ( normh ` ( f ` B ) ) = 1 <-> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) | 
						
							| 13 | 10 12 | imbi12d |  |-  ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) ) | 
						
							| 14 | 13 | notbid |  |-  ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> -. ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) ) | 
						
							| 15 | 14 | rspcev |  |-  ( ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) e. CHStates /\ -. ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 16 | 7 8 15 | syl2anc |  |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 17 | 16 | rexlimiva |  |-  ( E. u e. ( A \ B ) ( normh ` u ) = 1 -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 18 | 4 17 | syl |  |-  ( -. A C_ B -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 19 | 18 | con1i |  |-  ( -. E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) -> A C_ B ) | 
						
							| 20 | 3 19 | sylbi |  |-  ( A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) -> A C_ B ) |