| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstr.1 |
|- A e. CH |
| 2 |
|
hstr.2 |
|- B e. CH |
| 3 |
|
dfral2 |
|- ( A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> -. E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) |
| 4 |
1 2
|
strlem1 |
|- ( -. A C_ B -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
| 5 |
|
eqid |
|- ( x e. CH |-> ( ( projh ` x ) ` u ) ) = ( x e. CH |-> ( ( projh ` x ) ` u ) ) |
| 6 |
|
biid |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) |
| 7 |
5 6 1 2
|
hstrlem3 |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( x e. CH |-> ( ( projh ` x ) ` u ) ) e. CHStates ) |
| 8 |
5 6 1 2
|
hstrlem6 |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> -. ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) |
| 9 |
|
fveq1 |
|- ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( f ` A ) = ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) |
| 10 |
9
|
fveqeq2d |
|- ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( ( normh ` ( f ` A ) ) = 1 <-> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 ) ) |
| 11 |
|
fveq1 |
|- ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( f ` B ) = ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) |
| 12 |
11
|
fveqeq2d |
|- ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( ( normh ` ( f ` B ) ) = 1 <-> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) |
| 13 |
10 12
|
imbi12d |
|- ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) ) |
| 14 |
13
|
notbid |
|- ( f = ( x e. CH |-> ( ( projh ` x ) ` u ) ) -> ( -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> -. ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) ) |
| 15 |
14
|
rspcev |
|- ( ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) e. CHStates /\ -. ( ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` A ) ) = 1 -> ( normh ` ( ( x e. CH |-> ( ( projh ` x ) ` u ) ) ` B ) ) = 1 ) ) -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) |
| 16 |
7 8 15
|
syl2anc |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) |
| 17 |
16
|
rexlimiva |
|- ( E. u e. ( A \ B ) ( normh ` u ) = 1 -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) |
| 18 |
4 17
|
syl |
|- ( -. A C_ B -> E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) |
| 19 |
18
|
con1i |
|- ( -. E. f e. CHStates -. ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) -> A C_ B ) |
| 20 |
3 19
|
sylbi |
|- ( A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) -> A C_ B ) |