Metamath Proof Explorer


Theorem hstri

Description: Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in Mayet3 p. 10. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstr.1 A C
hstr.2 B C
Assertion hstri f CHStates norm f A = 1 norm f B = 1 A B

Proof

Step Hyp Ref Expression
1 hstr.1 A C
2 hstr.2 B C
3 dfral2 f CHStates norm f A = 1 norm f B = 1 ¬ f CHStates ¬ norm f A = 1 norm f B = 1
4 1 2 strlem1 ¬ A B u A B norm u = 1
5 eqid x C proj x u = x C proj x u
6 biid u A B norm u = 1 u A B norm u = 1
7 5 6 1 2 hstrlem3 u A B norm u = 1 x C proj x u CHStates
8 5 6 1 2 hstrlem6 u A B norm u = 1 ¬ norm x C proj x u A = 1 norm x C proj x u B = 1
9 fveq1 f = x C proj x u f A = x C proj x u A
10 9 fveqeq2d f = x C proj x u norm f A = 1 norm x C proj x u A = 1
11 fveq1 f = x C proj x u f B = x C proj x u B
12 11 fveqeq2d f = x C proj x u norm f B = 1 norm x C proj x u B = 1
13 10 12 imbi12d f = x C proj x u norm f A = 1 norm f B = 1 norm x C proj x u A = 1 norm x C proj x u B = 1
14 13 notbid f = x C proj x u ¬ norm f A = 1 norm f B = 1 ¬ norm x C proj x u A = 1 norm x C proj x u B = 1
15 14 rspcev x C proj x u CHStates ¬ norm x C proj x u A = 1 norm x C proj x u B = 1 f CHStates ¬ norm f A = 1 norm f B = 1
16 7 8 15 syl2anc u A B norm u = 1 f CHStates ¬ norm f A = 1 norm f B = 1
17 16 rexlimiva u A B norm u = 1 f CHStates ¬ norm f A = 1 norm f B = 1
18 4 17 syl ¬ A B f CHStates ¬ norm f A = 1 norm f B = 1
19 18 con1i ¬ f CHStates ¬ norm f A = 1 norm f B = 1 A B
20 3 19 sylbi f CHStates norm f A = 1 norm f B = 1 A B