Step |
Hyp |
Ref |
Expression |
1 |
|
strlem1.1 |
|
2 |
|
strlem1.2 |
|
3 |
|
neq0 |
|
4 |
|
ssdif0 |
|
5 |
3 4
|
xchnxbir |
|
6 |
|
eldifi |
|
7 |
1
|
cheli |
|
8 |
|
normcl |
|
9 |
6 7 8
|
3syl |
|
10 |
|
ch0 |
|
11 |
2 10
|
ax-mp |
|
12 |
|
eldifn |
|
13 |
11 12
|
mt2 |
|
14 |
|
eleq1 |
|
15 |
13 14
|
mtbiri |
|
16 |
15
|
con2i |
|
17 |
|
norm-i |
|
18 |
6 7 17
|
3syl |
|
19 |
16 18
|
mtbird |
|
20 |
19
|
neqned |
|
21 |
9 20
|
rereccld |
|
22 |
21
|
recnd |
|
23 |
1
|
chshii |
|
24 |
|
shmulcl |
|
25 |
23 24
|
mp3an1 |
|
26 |
25
|
ex |
|
27 |
22 26
|
syl |
|
28 |
9
|
recnd |
|
29 |
2
|
chshii |
|
30 |
|
shmulcl |
|
31 |
29 30
|
mp3an1 |
|
32 |
31
|
ex |
|
33 |
28 32
|
syl |
|
34 |
28 20
|
recidd |
|
35 |
34
|
oveq1d |
|
36 |
6 7
|
syl |
|
37 |
|
ax-hvmulass |
|
38 |
28 22 36 37
|
syl3anc |
|
39 |
|
ax-hvmulid |
|
40 |
6 7 39
|
3syl |
|
41 |
35 38 40
|
3eqtr3d |
|
42 |
41
|
eleq1d |
|
43 |
33 42
|
sylibd |
|
44 |
43
|
con3d |
|
45 |
27 44
|
anim12d |
|
46 |
|
eldif |
|
47 |
|
eldif |
|
48 |
45 46 47
|
3imtr4g |
|
49 |
48
|
pm2.43i |
|
50 |
|
norm-iii |
|
51 |
22 36 50
|
syl2anc |
|
52 |
15
|
necon2ai |
|
53 |
|
normgt0 |
|
54 |
6 7 53
|
3syl |
|
55 |
52 54
|
mpbid |
|
56 |
|
1re |
|
57 |
|
0le1 |
|
58 |
|
divge0 |
|
59 |
56 57 58
|
mpanl12 |
|
60 |
9 55 59
|
syl2anc |
|
61 |
21 60
|
absidd |
|
62 |
61
|
oveq1d |
|
63 |
28 20
|
recid2d |
|
64 |
51 62 63
|
3eqtrd |
|
65 |
|
fveqeq2 |
|
66 |
65
|
rspcev |
|
67 |
49 64 66
|
syl2anc |
|
68 |
67
|
exlimiv |
|
69 |
5 68
|
sylbi |
|