| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | strlem1.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | neq0 | ⊢ ( ¬  ( 𝐴  ∖  𝐵 )  =  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 4 |  | ssdif0 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∖  𝐵 )  =  ∅ ) | 
						
							| 5 | 3 4 | xchnxbir | ⊢ ( ¬  𝐴  ⊆  𝐵  ↔  ∃ 𝑥 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 6 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 7 | 1 | cheli | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈   ℋ ) | 
						
							| 8 |  | normcl | ⊢ ( 𝑥  ∈   ℋ  →  ( normℎ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 10 |  | ch0 | ⊢ ( 𝐵  ∈   Cℋ   →  0ℎ  ∈  𝐵 ) | 
						
							| 11 | 2 10 | ax-mp | ⊢ 0ℎ  ∈  𝐵 | 
						
							| 12 |  | eldifn | ⊢ ( 0ℎ  ∈  ( 𝐴  ∖  𝐵 )  →  ¬  0ℎ  ∈  𝐵 ) | 
						
							| 13 | 11 12 | mt2 | ⊢ ¬  0ℎ  ∈  ( 𝐴  ∖  𝐵 ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑥  =  0ℎ  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↔  0ℎ  ∈  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 15 | 13 14 | mtbiri | ⊢ ( 𝑥  =  0ℎ  →  ¬  𝑥  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 16 | 15 | con2i | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ¬  𝑥  =  0ℎ ) | 
						
							| 17 |  | norm-i | ⊢ ( 𝑥  ∈   ℋ  →  ( ( normℎ ‘ 𝑥 )  =  0  ↔  𝑥  =  0ℎ ) ) | 
						
							| 18 | 6 7 17 | 3syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( normℎ ‘ 𝑥 )  =  0  ↔  𝑥  =  0ℎ ) ) | 
						
							| 19 | 16 18 | mtbird | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ¬  ( normℎ ‘ 𝑥 )  =  0 ) | 
						
							| 20 | 19 | neqned | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ 𝑥 )  ≠  0 ) | 
						
							| 21 | 9 20 | rereccld | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 23 | 1 | chshii | ⊢ 𝐴  ∈   Sℋ | 
						
							| 24 |  | shmulcl | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℂ  ∧  𝑥  ∈  𝐴 )  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐴 ) | 
						
							| 25 | 23 24 | mp3an1 | ⊢ ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℂ  ∧  𝑥  ∈  𝐴 )  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐴 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℂ  →  ( 𝑥  ∈  𝐴  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐴 ) ) | 
						
							| 27 | 22 26 | syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 𝑥  ∈  𝐴  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐴 ) ) | 
						
							| 28 | 9 | recnd | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 29 | 2 | chshii | ⊢ 𝐵  ∈   Sℋ | 
						
							| 30 |  | shmulcl | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  ( normℎ ‘ 𝑥 )  ∈  ℂ  ∧  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵 )  →  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  ∈  𝐵 ) | 
						
							| 31 | 29 30 | mp3an1 | ⊢ ( ( ( normℎ ‘ 𝑥 )  ∈  ℂ  ∧  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵 )  →  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  ∈  𝐵 ) | 
						
							| 32 | 31 | ex | ⊢ ( ( normℎ ‘ 𝑥 )  ∈  ℂ  →  ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵  →  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  ∈  𝐵 ) ) | 
						
							| 33 | 28 32 | syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵  →  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  ∈  𝐵 ) ) | 
						
							| 34 | 28 20 | recidd | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( normℎ ‘ 𝑥 )  ·  ( 1  /  ( normℎ ‘ 𝑥 ) ) )  =  1 ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( ( normℎ ‘ 𝑥 )  ·  ( 1  /  ( normℎ ‘ 𝑥 ) ) )  ·ℎ  𝑥 )  =  ( 1  ·ℎ  𝑥 ) ) | 
						
							| 36 | 6 7 | syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  𝑥  ∈   ℋ ) | 
						
							| 37 |  | ax-hvmulass | ⊢ ( ( ( normℎ ‘ 𝑥 )  ∈  ℂ  ∧  ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℂ  ∧  𝑥  ∈   ℋ )  →  ( ( ( normℎ ‘ 𝑥 )  ·  ( 1  /  ( normℎ ‘ 𝑥 ) ) )  ·ℎ  𝑥 )  =  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) ) ) | 
						
							| 38 | 28 22 36 37 | syl3anc | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( ( normℎ ‘ 𝑥 )  ·  ( 1  /  ( normℎ ‘ 𝑥 ) ) )  ·ℎ  𝑥 )  =  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) ) ) | 
						
							| 39 |  | ax-hvmulid | ⊢ ( 𝑥  ∈   ℋ  →  ( 1  ·ℎ  𝑥 )  =  𝑥 ) | 
						
							| 40 | 6 7 39 | 3syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 1  ·ℎ  𝑥 )  =  𝑥 ) | 
						
							| 41 | 35 38 40 | 3eqtr3d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  =  𝑥 ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( ( normℎ ‘ 𝑥 )  ·ℎ  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  ∈  𝐵  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 43 | 33 42 | sylibd | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵  →  𝑥  ∈  𝐵 ) ) | 
						
							| 44 | 43 | con3d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ¬  𝑥  ∈  𝐵  →  ¬  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵 ) ) | 
						
							| 45 | 27 44 | anim12d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  →  ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐴  ∧  ¬  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 46 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) ) | 
						
							| 47 |  | eldif | ⊢ ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐴  ∧  ¬  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  𝐵 ) ) | 
						
							| 48 | 45 46 47 | 3imtr4g | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 49 | 48 | pm2.43i | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 50 |  | norm-iii | ⊢ ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ∈  ℂ  ∧  𝑥  ∈   ℋ )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  =  ( ( abs ‘ ( 1  /  ( normℎ ‘ 𝑥 ) ) )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 51 | 22 36 50 | syl2anc | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  =  ( ( abs ‘ ( 1  /  ( normℎ ‘ 𝑥 ) ) )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 52 | 15 | necon2ai | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  𝑥  ≠  0ℎ ) | 
						
							| 53 |  | normgt0 | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑥  ≠  0ℎ  ↔  0  <  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 54 | 6 7 53 | 3syl | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 𝑥  ≠  0ℎ  ↔  0  <  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 55 | 52 54 | mpbid | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  0  <  ( normℎ ‘ 𝑥 ) ) | 
						
							| 56 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 57 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 58 |  | divge0 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( ( normℎ ‘ 𝑥 )  ∈  ℝ  ∧  0  <  ( normℎ ‘ 𝑥 ) ) )  →  0  ≤  ( 1  /  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 59 | 56 57 58 | mpanl12 | ⊢ ( ( ( normℎ ‘ 𝑥 )  ∈  ℝ  ∧  0  <  ( normℎ ‘ 𝑥 ) )  →  0  ≤  ( 1  /  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 60 | 9 55 59 | syl2anc | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  0  ≤  ( 1  /  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 61 | 21 60 | absidd | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( abs ‘ ( 1  /  ( normℎ ‘ 𝑥 ) ) )  =  ( 1  /  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( abs ‘ ( 1  /  ( normℎ ‘ 𝑥 ) ) )  ·  ( normℎ ‘ 𝑥 ) )  =  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 63 | 28 20 | recid2d | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·  ( normℎ ‘ 𝑥 ) )  =  1 ) | 
						
							| 64 | 51 62 63 | 3eqtrd | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  =  1 ) | 
						
							| 65 |  | fveqeq2 | ⊢ ( 𝑢  =  ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  →  ( ( normℎ ‘ 𝑢 )  =  1  ↔  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  =  1 ) ) | 
						
							| 66 | 65 | rspcev | ⊢ ( ( ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 )  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑥 ) )  ·ℎ  𝑥 ) )  =  1 )  →  ∃ 𝑢  ∈  ( 𝐴  ∖  𝐵 ) ( normℎ ‘ 𝑢 )  =  1 ) | 
						
							| 67 | 49 64 66 | syl2anc | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ∃ 𝑢  ∈  ( 𝐴  ∖  𝐵 ) ( normℎ ‘ 𝑢 )  =  1 ) | 
						
							| 68 | 67 | exlimiv | ⊢ ( ∃ 𝑥 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ∃ 𝑢  ∈  ( 𝐴  ∖  𝐵 ) ( normℎ ‘ 𝑢 )  =  1 ) | 
						
							| 69 | 5 68 | sylbi | ⊢ ( ¬  𝐴  ⊆  𝐵  →  ∃ 𝑢  ∈  ( 𝐴  ∖  𝐵 ) ( normℎ ‘ 𝑢 )  =  1 ) |