| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem1.1 |  |-  A e. CH | 
						
							| 2 |  | strlem1.2 |  |-  B e. CH | 
						
							| 3 |  | neq0 |  |-  ( -. ( A \ B ) = (/) <-> E. x x e. ( A \ B ) ) | 
						
							| 4 |  | ssdif0 |  |-  ( A C_ B <-> ( A \ B ) = (/) ) | 
						
							| 5 | 3 4 | xchnxbir |  |-  ( -. A C_ B <-> E. x x e. ( A \ B ) ) | 
						
							| 6 |  | eldifi |  |-  ( x e. ( A \ B ) -> x e. A ) | 
						
							| 7 | 1 | cheli |  |-  ( x e. A -> x e. ~H ) | 
						
							| 8 |  | normcl |  |-  ( x e. ~H -> ( normh ` x ) e. RR ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( x e. ( A \ B ) -> ( normh ` x ) e. RR ) | 
						
							| 10 |  | ch0 |  |-  ( B e. CH -> 0h e. B ) | 
						
							| 11 | 2 10 | ax-mp |  |-  0h e. B | 
						
							| 12 |  | eldifn |  |-  ( 0h e. ( A \ B ) -> -. 0h e. B ) | 
						
							| 13 | 11 12 | mt2 |  |-  -. 0h e. ( A \ B ) | 
						
							| 14 |  | eleq1 |  |-  ( x = 0h -> ( x e. ( A \ B ) <-> 0h e. ( A \ B ) ) ) | 
						
							| 15 | 13 14 | mtbiri |  |-  ( x = 0h -> -. x e. ( A \ B ) ) | 
						
							| 16 | 15 | con2i |  |-  ( x e. ( A \ B ) -> -. x = 0h ) | 
						
							| 17 |  | norm-i |  |-  ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) | 
						
							| 18 | 6 7 17 | 3syl |  |-  ( x e. ( A \ B ) -> ( ( normh ` x ) = 0 <-> x = 0h ) ) | 
						
							| 19 | 16 18 | mtbird |  |-  ( x e. ( A \ B ) -> -. ( normh ` x ) = 0 ) | 
						
							| 20 | 19 | neqned |  |-  ( x e. ( A \ B ) -> ( normh ` x ) =/= 0 ) | 
						
							| 21 | 9 20 | rereccld |  |-  ( x e. ( A \ B ) -> ( 1 / ( normh ` x ) ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( x e. ( A \ B ) -> ( 1 / ( normh ` x ) ) e. CC ) | 
						
							| 23 | 1 | chshii |  |-  A e. SH | 
						
							| 24 |  | shmulcl |  |-  ( ( A e. SH /\ ( 1 / ( normh ` x ) ) e. CC /\ x e. A ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) | 
						
							| 25 | 23 24 | mp3an1 |  |-  ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. A ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) | 
						
							| 26 | 25 | ex |  |-  ( ( 1 / ( normh ` x ) ) e. CC -> ( x e. A -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) ) | 
						
							| 27 | 22 26 | syl |  |-  ( x e. ( A \ B ) -> ( x e. A -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) ) | 
						
							| 28 | 9 | recnd |  |-  ( x e. ( A \ B ) -> ( normh ` x ) e. CC ) | 
						
							| 29 | 2 | chshii |  |-  B e. SH | 
						
							| 30 |  | shmulcl |  |-  ( ( B e. SH /\ ( normh ` x ) e. CC /\ ( ( 1 / ( normh ` x ) ) .h x ) e. B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) | 
						
							| 31 | 29 30 | mp3an1 |  |-  ( ( ( normh ` x ) e. CC /\ ( ( 1 / ( normh ` x ) ) .h x ) e. B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) | 
						
							| 32 | 31 | ex |  |-  ( ( normh ` x ) e. CC -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) ) | 
						
							| 33 | 28 32 | syl |  |-  ( x e. ( A \ B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) ) | 
						
							| 34 | 28 20 | recidd |  |-  ( x e. ( A \ B ) -> ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) = 1 ) | 
						
							| 35 | 34 | oveq1d |  |-  ( x e. ( A \ B ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( 1 .h x ) ) | 
						
							| 36 | 6 7 | syl |  |-  ( x e. ( A \ B ) -> x e. ~H ) | 
						
							| 37 |  | ax-hvmulass |  |-  ( ( ( normh ` x ) e. CC /\ ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) ) | 
						
							| 38 | 28 22 36 37 | syl3anc |  |-  ( x e. ( A \ B ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) ) | 
						
							| 39 |  | ax-hvmulid |  |-  ( x e. ~H -> ( 1 .h x ) = x ) | 
						
							| 40 | 6 7 39 | 3syl |  |-  ( x e. ( A \ B ) -> ( 1 .h x ) = x ) | 
						
							| 41 | 35 38 40 | 3eqtr3d |  |-  ( x e. ( A \ B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) = x ) | 
						
							| 42 | 41 | eleq1d |  |-  ( x e. ( A \ B ) -> ( ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B <-> x e. B ) ) | 
						
							| 43 | 33 42 | sylibd |  |-  ( x e. ( A \ B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> x e. B ) ) | 
						
							| 44 | 43 | con3d |  |-  ( x e. ( A \ B ) -> ( -. x e. B -> -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) | 
						
							| 45 | 27 44 | anim12d |  |-  ( x e. ( A \ B ) -> ( ( x e. A /\ -. x e. B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. A /\ -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) ) | 
						
							| 46 |  | eldif |  |-  ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) | 
						
							| 47 |  | eldif |  |-  ( ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) <-> ( ( ( 1 / ( normh ` x ) ) .h x ) e. A /\ -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) | 
						
							| 48 | 45 46 47 | 3imtr4g |  |-  ( x e. ( A \ B ) -> ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) ) ) | 
						
							| 49 | 48 | pm2.43i |  |-  ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) ) | 
						
							| 50 |  | norm-iii |  |-  ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) ) | 
						
							| 51 | 22 36 50 | syl2anc |  |-  ( x e. ( A \ B ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) ) | 
						
							| 52 | 15 | necon2ai |  |-  ( x e. ( A \ B ) -> x =/= 0h ) | 
						
							| 53 |  | normgt0 |  |-  ( x e. ~H -> ( x =/= 0h <-> 0 < ( normh ` x ) ) ) | 
						
							| 54 | 6 7 53 | 3syl |  |-  ( x e. ( A \ B ) -> ( x =/= 0h <-> 0 < ( normh ` x ) ) ) | 
						
							| 55 | 52 54 | mpbid |  |-  ( x e. ( A \ B ) -> 0 < ( normh ` x ) ) | 
						
							| 56 |  | 1re |  |-  1 e. RR | 
						
							| 57 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 58 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( normh ` x ) e. RR /\ 0 < ( normh ` x ) ) ) -> 0 <_ ( 1 / ( normh ` x ) ) ) | 
						
							| 59 | 56 57 58 | mpanl12 |  |-  ( ( ( normh ` x ) e. RR /\ 0 < ( normh ` x ) ) -> 0 <_ ( 1 / ( normh ` x ) ) ) | 
						
							| 60 | 9 55 59 | syl2anc |  |-  ( x e. ( A \ B ) -> 0 <_ ( 1 / ( normh ` x ) ) ) | 
						
							| 61 | 21 60 | absidd |  |-  ( x e. ( A \ B ) -> ( abs ` ( 1 / ( normh ` x ) ) ) = ( 1 / ( normh ` x ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( x e. ( A \ B ) -> ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) = ( ( 1 / ( normh ` x ) ) x. ( normh ` x ) ) ) | 
						
							| 63 | 28 20 | recid2d |  |-  ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) x. ( normh ` x ) ) = 1 ) | 
						
							| 64 | 51 62 63 | 3eqtrd |  |-  ( x e. ( A \ B ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) | 
						
							| 65 |  | fveqeq2 |  |-  ( u = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` u ) = 1 <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) ) | 
						
							| 66 | 65 | rspcev |  |-  ( ( ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) | 
						
							| 67 | 49 64 66 | syl2anc |  |-  ( x e. ( A \ B ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) | 
						
							| 68 | 67 | exlimiv |  |-  ( E. x x e. ( A \ B ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) | 
						
							| 69 | 5 68 | sylbi |  |-  ( -. A C_ B -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |