Step |
Hyp |
Ref |
Expression |
1 |
|
strlem1.1 |
|- A e. CH |
2 |
|
strlem1.2 |
|- B e. CH |
3 |
|
neq0 |
|- ( -. ( A \ B ) = (/) <-> E. x x e. ( A \ B ) ) |
4 |
|
ssdif0 |
|- ( A C_ B <-> ( A \ B ) = (/) ) |
5 |
3 4
|
xchnxbir |
|- ( -. A C_ B <-> E. x x e. ( A \ B ) ) |
6 |
|
eldifi |
|- ( x e. ( A \ B ) -> x e. A ) |
7 |
1
|
cheli |
|- ( x e. A -> x e. ~H ) |
8 |
|
normcl |
|- ( x e. ~H -> ( normh ` x ) e. RR ) |
9 |
6 7 8
|
3syl |
|- ( x e. ( A \ B ) -> ( normh ` x ) e. RR ) |
10 |
|
ch0 |
|- ( B e. CH -> 0h e. B ) |
11 |
2 10
|
ax-mp |
|- 0h e. B |
12 |
|
eldifn |
|- ( 0h e. ( A \ B ) -> -. 0h e. B ) |
13 |
11 12
|
mt2 |
|- -. 0h e. ( A \ B ) |
14 |
|
eleq1 |
|- ( x = 0h -> ( x e. ( A \ B ) <-> 0h e. ( A \ B ) ) ) |
15 |
13 14
|
mtbiri |
|- ( x = 0h -> -. x e. ( A \ B ) ) |
16 |
15
|
con2i |
|- ( x e. ( A \ B ) -> -. x = 0h ) |
17 |
|
norm-i |
|- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
18 |
6 7 17
|
3syl |
|- ( x e. ( A \ B ) -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
19 |
16 18
|
mtbird |
|- ( x e. ( A \ B ) -> -. ( normh ` x ) = 0 ) |
20 |
19
|
neqned |
|- ( x e. ( A \ B ) -> ( normh ` x ) =/= 0 ) |
21 |
9 20
|
rereccld |
|- ( x e. ( A \ B ) -> ( 1 / ( normh ` x ) ) e. RR ) |
22 |
21
|
recnd |
|- ( x e. ( A \ B ) -> ( 1 / ( normh ` x ) ) e. CC ) |
23 |
1
|
chshii |
|- A e. SH |
24 |
|
shmulcl |
|- ( ( A e. SH /\ ( 1 / ( normh ` x ) ) e. CC /\ x e. A ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) |
25 |
23 24
|
mp3an1 |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. A ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) |
26 |
25
|
ex |
|- ( ( 1 / ( normh ` x ) ) e. CC -> ( x e. A -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) ) |
27 |
22 26
|
syl |
|- ( x e. ( A \ B ) -> ( x e. A -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) ) |
28 |
9
|
recnd |
|- ( x e. ( A \ B ) -> ( normh ` x ) e. CC ) |
29 |
2
|
chshii |
|- B e. SH |
30 |
|
shmulcl |
|- ( ( B e. SH /\ ( normh ` x ) e. CC /\ ( ( 1 / ( normh ` x ) ) .h x ) e. B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) |
31 |
29 30
|
mp3an1 |
|- ( ( ( normh ` x ) e. CC /\ ( ( 1 / ( normh ` x ) ) .h x ) e. B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) |
32 |
31
|
ex |
|- ( ( normh ` x ) e. CC -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) ) |
33 |
28 32
|
syl |
|- ( x e. ( A \ B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) ) |
34 |
28 20
|
recidd |
|- ( x e. ( A \ B ) -> ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) = 1 ) |
35 |
34
|
oveq1d |
|- ( x e. ( A \ B ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( 1 .h x ) ) |
36 |
6 7
|
syl |
|- ( x e. ( A \ B ) -> x e. ~H ) |
37 |
|
ax-hvmulass |
|- ( ( ( normh ` x ) e. CC /\ ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
38 |
28 22 36 37
|
syl3anc |
|- ( x e. ( A \ B ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
39 |
|
ax-hvmulid |
|- ( x e. ~H -> ( 1 .h x ) = x ) |
40 |
6 7 39
|
3syl |
|- ( x e. ( A \ B ) -> ( 1 .h x ) = x ) |
41 |
35 38 40
|
3eqtr3d |
|- ( x e. ( A \ B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) = x ) |
42 |
41
|
eleq1d |
|- ( x e. ( A \ B ) -> ( ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B <-> x e. B ) ) |
43 |
33 42
|
sylibd |
|- ( x e. ( A \ B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> x e. B ) ) |
44 |
43
|
con3d |
|- ( x e. ( A \ B ) -> ( -. x e. B -> -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) |
45 |
27 44
|
anim12d |
|- ( x e. ( A \ B ) -> ( ( x e. A /\ -. x e. B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. A /\ -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) ) |
46 |
|
eldif |
|- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
47 |
|
eldif |
|- ( ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) <-> ( ( ( 1 / ( normh ` x ) ) .h x ) e. A /\ -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) |
48 |
45 46 47
|
3imtr4g |
|- ( x e. ( A \ B ) -> ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) ) ) |
49 |
48
|
pm2.43i |
|- ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) ) |
50 |
|
norm-iii |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) ) |
51 |
22 36 50
|
syl2anc |
|- ( x e. ( A \ B ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) ) |
52 |
15
|
necon2ai |
|- ( x e. ( A \ B ) -> x =/= 0h ) |
53 |
|
normgt0 |
|- ( x e. ~H -> ( x =/= 0h <-> 0 < ( normh ` x ) ) ) |
54 |
6 7 53
|
3syl |
|- ( x e. ( A \ B ) -> ( x =/= 0h <-> 0 < ( normh ` x ) ) ) |
55 |
52 54
|
mpbid |
|- ( x e. ( A \ B ) -> 0 < ( normh ` x ) ) |
56 |
|
1re |
|- 1 e. RR |
57 |
|
0le1 |
|- 0 <_ 1 |
58 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( normh ` x ) e. RR /\ 0 < ( normh ` x ) ) ) -> 0 <_ ( 1 / ( normh ` x ) ) ) |
59 |
56 57 58
|
mpanl12 |
|- ( ( ( normh ` x ) e. RR /\ 0 < ( normh ` x ) ) -> 0 <_ ( 1 / ( normh ` x ) ) ) |
60 |
9 55 59
|
syl2anc |
|- ( x e. ( A \ B ) -> 0 <_ ( 1 / ( normh ` x ) ) ) |
61 |
21 60
|
absidd |
|- ( x e. ( A \ B ) -> ( abs ` ( 1 / ( normh ` x ) ) ) = ( 1 / ( normh ` x ) ) ) |
62 |
61
|
oveq1d |
|- ( x e. ( A \ B ) -> ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) = ( ( 1 / ( normh ` x ) ) x. ( normh ` x ) ) ) |
63 |
28 20
|
recid2d |
|- ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) x. ( normh ` x ) ) = 1 ) |
64 |
51 62 63
|
3eqtrd |
|- ( x e. ( A \ B ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) |
65 |
|
fveqeq2 |
|- ( u = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` u ) = 1 <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) ) |
66 |
65
|
rspcev |
|- ( ( ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
67 |
49 64 66
|
syl2anc |
|- ( x e. ( A \ B ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
68 |
67
|
exlimiv |
|- ( E. x x e. ( A \ B ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
69 |
5 68
|
sylbi |
|- ( -. A C_ B -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |