| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) | 
						
							| 2 |  | hstrlem3.2 | ⊢ ( 𝜑  ↔  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 ) ) | 
						
							| 3 |  | hstrlem3.3 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 4 |  | hstrlem3.4 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 5 | 1 2 3 4 | hstrlem4 | ⊢ ( 𝜑  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 ) | 
						
							| 6 | 1 2 3 4 | hstrlem3 | ⊢ ( 𝜑  →  𝑆  ∈  CHStates ) | 
						
							| 7 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 8 | 6 4 7 | sylancl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 9 |  | normcl | ⊢ ( ( 𝑆 ‘ 𝐵 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 11 | 1 2 3 4 | hstrlem5 | ⊢ ( 𝜑  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  <  1 ) | 
						
							| 12 | 10 11 | ltned | ⊢ ( 𝜑  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≠  1 ) | 
						
							| 13 | 12 | neneqd | ⊢ ( 𝜑  →  ¬  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1 ) | 
						
							| 14 | 5 13 | jcnd | ⊢ ( 𝜑  →  ¬  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1 ) ) |