| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3.1 |  |-  S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) | 
						
							| 2 |  | hstrlem3.2 |  |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) | 
						
							| 3 |  | hstrlem3.3 |  |-  A e. CH | 
						
							| 4 |  | hstrlem3.4 |  |-  B e. CH | 
						
							| 5 | 1 | hstrlem2 |  |-  ( A e. CH -> ( S ` A ) = ( ( projh ` A ) ` u ) ) | 
						
							| 6 | 3 5 | ax-mp |  |-  ( S ` A ) = ( ( projh ` A ) ` u ) | 
						
							| 7 | 6 | fveq2i |  |-  ( normh ` ( S ` A ) ) = ( normh ` ( ( projh ` A ) ` u ) ) | 
						
							| 8 |  | eldifi |  |-  ( u e. ( A \ B ) -> u e. A ) | 
						
							| 9 |  | pjid |  |-  ( ( A e. CH /\ u e. A ) -> ( ( projh ` A ) ` u ) = u ) | 
						
							| 10 | 3 9 | mpan |  |-  ( u e. A -> ( ( projh ` A ) ` u ) = u ) | 
						
							| 11 | 10 | fveq2d |  |-  ( u e. A -> ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) ) | 
						
							| 12 |  | eqeq2 |  |-  ( ( normh ` u ) = 1 -> ( ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 13 | 11 12 | imbitrid |  |-  ( ( normh ` u ) = 1 -> ( u e. A -> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 14 | 8 13 | mpan9 |  |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) | 
						
							| 15 | 2 14 | sylbi |  |-  ( ph -> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) | 
						
							| 16 | 7 15 | eqtrid |  |-  ( ph -> ( normh ` ( S ` A ) ) = 1 ) |