| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3a.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) | 
						
							| 2 |  | pjhcl | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝑢  ∈   ℋ  ∧  𝑥  ∈   Cℋ  )  →  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 4 | 3 | adantlr | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 5 | 4 1 | fmptd | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  𝑆 :  Cℋ  ⟶  ℋ ) | 
						
							| 6 |  | helch | ⊢  ℋ  ∈   Cℋ | 
						
							| 7 | 1 | hstrlem2 | ⊢ (  ℋ  ∈   Cℋ   →  ( 𝑆 ‘  ℋ )  =  ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( 𝑆 ‘  ℋ )  =  ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) | 
						
							| 9 | 8 | fveq2i | ⊢ ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) ) | 
						
							| 10 |  | pjch1 | ⊢ ( 𝑢  ∈   ℋ  →  ( ( projℎ ‘  ℋ ) ‘ 𝑢 )  =  𝑢 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑢  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 ) ) | 
						
							| 12 |  | id | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( normℎ ‘ 𝑢 )  =  1 ) | 
						
							| 13 | 11 12 | sylan9eq | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) )  =  1 ) | 
						
							| 14 | 9 13 | eqtrid | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1 ) | 
						
							| 15 | 1 | hstrlem2 | ⊢ ( 𝑧  ∈   Cℋ   →  ( 𝑆 ‘ 𝑧 )  =  ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) | 
						
							| 16 | 1 | hstrlem2 | ⊢ ( 𝑤  ∈   Cℋ   →  ( 𝑆 ‘ 𝑤 )  =  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) | 
						
							| 17 | 15 16 | oveqan12d | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  ·ih  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  ·ih  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  ·ih  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 20 |  | pjoi0 | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  ·ih  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) )  =  0 ) | 
						
							| 21 | 19 20 | eqtrd | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0 ) | 
						
							| 22 |  | pjcjt2 | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 24 |  | chjcl | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  )  →  ( 𝑧  ∨ℋ  𝑤 )  ∈   Cℋ  ) | 
						
							| 25 | 1 | hstrlem2 | ⊢ ( ( 𝑧  ∨ℋ  𝑤 )  ∈   Cℋ   →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) | 
						
							| 29 | 15 16 | oveqan12d | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 30 | 29 | 3adant3 | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 32 | 23 28 31 | 3eqtr4d | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) | 
						
							| 33 | 21 32 | jca | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) | 
						
							| 34 | 33 | 3exp1 | ⊢ ( 𝑧  ∈   Cℋ   →  ( 𝑤  ∈   Cℋ   →  ( 𝑢  ∈   ℋ  →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) ) | 
						
							| 35 | 34 | com3r | ⊢ ( 𝑢  ∈   ℋ  →  ( 𝑧  ∈   Cℋ   →  ( 𝑤  ∈   Cℋ   →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑧  ∈   Cℋ   →  ( 𝑤  ∈   Cℋ   →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) ) | 
						
							| 37 | 36 | ralrimdv | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑧  ∈   Cℋ   →  ∀ 𝑤  ∈   Cℋ  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 38 | 37 | ralrimiv | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ∀ 𝑧  ∈   Cℋ  ∀ 𝑤  ∈   Cℋ  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) ) | 
						
							| 39 |  | ishst | ⊢ ( 𝑆  ∈  CHStates  ↔  ( 𝑆 :  Cℋ  ⟶  ℋ  ∧  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1  ∧  ∀ 𝑧  ∈   Cℋ  ∀ 𝑤  ∈   Cℋ  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( ( 𝑆 ‘ 𝑧 )  ·ih  ( 𝑆 ‘ 𝑤 ) )  =  0  ∧  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +ℎ  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 40 | 5 14 38 39 | syl3anbrc | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  𝑆  ∈  CHStates ) |