Step |
Hyp |
Ref |
Expression |
1 |
|
hstrlem3a.1 |
|
2 |
|
pjhcl |
|
3 |
2
|
ancoms |
|
4 |
3
|
adantlr |
|
5 |
4 1
|
fmptd |
|
6 |
|
helch |
|
7 |
1
|
hstrlem2 |
|
8 |
6 7
|
ax-mp |
|
9 |
8
|
fveq2i |
|
10 |
|
pjch1 |
|
11 |
10
|
fveq2d |
|
12 |
|
id |
|
13 |
11 12
|
sylan9eq |
|
14 |
9 13
|
eqtrid |
|
15 |
1
|
hstrlem2 |
|
16 |
1
|
hstrlem2 |
|
17 |
15 16
|
oveqan12d |
|
18 |
17
|
3adant3 |
|
19 |
18
|
adantr |
|
20 |
|
pjoi0 |
|
21 |
19 20
|
eqtrd |
|
22 |
|
pjcjt2 |
|
23 |
22
|
imp |
|
24 |
|
chjcl |
|
25 |
1
|
hstrlem2 |
|
26 |
24 25
|
syl |
|
27 |
26
|
3adant3 |
|
28 |
27
|
adantr |
|
29 |
15 16
|
oveqan12d |
|
30 |
29
|
3adant3 |
|
31 |
30
|
adantr |
|
32 |
23 28 31
|
3eqtr4d |
|
33 |
21 32
|
jca |
|
34 |
33
|
3exp1 |
|
35 |
34
|
com3r |
|
36 |
35
|
adantr |
|
37 |
36
|
ralrimdv |
|
38 |
37
|
ralrimiv |
|
39 |
|
ishst |
|
40 |
5 14 38 39
|
syl3anbrc |
|