| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3a.1 |  | 
						
							| 2 |  | pjhcl |  | 
						
							| 3 | 2 | ancoms |  | 
						
							| 4 | 3 | adantlr |  | 
						
							| 5 | 4 1 | fmptd |  | 
						
							| 6 |  | helch |  | 
						
							| 7 | 1 | hstrlem2 |  | 
						
							| 8 | 6 7 | ax-mp |  | 
						
							| 9 | 8 | fveq2i |  | 
						
							| 10 |  | pjch1 |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 |  | id |  | 
						
							| 13 | 11 12 | sylan9eq |  | 
						
							| 14 | 9 13 | eqtrid |  | 
						
							| 15 | 1 | hstrlem2 |  | 
						
							| 16 | 1 | hstrlem2 |  | 
						
							| 17 | 15 16 | oveqan12d |  | 
						
							| 18 | 17 | 3adant3 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | pjoi0 |  | 
						
							| 21 | 19 20 | eqtrd |  | 
						
							| 22 |  | pjcjt2 |  | 
						
							| 23 | 22 | imp |  | 
						
							| 24 |  | chjcl |  | 
						
							| 25 | 1 | hstrlem2 |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 26 | 3adant3 |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 15 16 | oveqan12d |  | 
						
							| 30 | 29 | 3adant3 |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 23 28 31 | 3eqtr4d |  | 
						
							| 33 | 21 32 | jca |  | 
						
							| 34 | 33 | 3exp1 |  | 
						
							| 35 | 34 | com3r |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 36 | ralrimdv |  | 
						
							| 38 | 37 | ralrimiv |  | 
						
							| 39 |  | ishst |  | 
						
							| 40 | 5 14 38 39 | syl3anbrc |  |