Step |
Hyp |
Ref |
Expression |
1 |
|
i1fpos.1 |
|- G = ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) |
2 |
|
simpr |
|- ( ( F e. dom S.1 /\ x e. RR ) -> x e. RR ) |
3 |
2
|
biantrurd |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) |
4 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
5 |
4
|
ffvelrnda |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( F ` x ) e. RR ) |
6 |
5
|
biantrurd |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) ) |
7 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
8 |
6 7
|
bitr4di |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( F ` x ) e. ( 0 [,) +oo ) ) ) |
9 |
4
|
adantr |
|- ( ( F e. dom S.1 /\ x e. RR ) -> F : RR --> RR ) |
10 |
|
ffn |
|- ( F : RR --> RR -> F Fn RR ) |
11 |
|
elpreima |
|- ( F Fn RR -> ( x e. ( `' F " ( 0 [,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) |
12 |
9 10 11
|
3syl |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( x e. ( `' F " ( 0 [,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( 0 [,) +oo ) ) ) ) |
13 |
3 8 12
|
3bitr4d |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> x e. ( `' F " ( 0 [,) +oo ) ) ) ) |
14 |
13
|
ifbid |
|- ( ( F e. dom S.1 /\ x e. RR ) -> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) = if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) |
15 |
14
|
mpteq2dva |
|- ( F e. dom S.1 -> ( x e. RR |-> if ( 0 <_ ( F ` x ) , ( F ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) ) |
16 |
1 15
|
eqtrid |
|- ( F e. dom S.1 -> G = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) ) |
17 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " ( 0 [,) +oo ) ) e. dom vol ) |
18 |
|
eqid |
|- ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) |
19 |
18
|
i1fres |
|- ( ( F e. dom S.1 /\ ( `' F " ( 0 [,) +oo ) ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) e. dom S.1 ) |
20 |
17 19
|
mpdan |
|- ( F e. dom S.1 -> ( x e. RR |-> if ( x e. ( `' F " ( 0 [,) +oo ) ) , ( F ` x ) , 0 ) ) e. dom S.1 ) |
21 |
16 20
|
eqeltrd |
|- ( F e. dom S.1 -> G e. dom S.1 ) |