Metamath Proof Explorer


Theorem i1fpos

Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis i1fpos.1 G=xif0FxFx0
Assertion i1fpos Fdom1Gdom1

Proof

Step Hyp Ref Expression
1 i1fpos.1 G=xif0FxFx0
2 simpr Fdom1xx
3 2 biantrurd Fdom1xFx0+∞xFx0+∞
4 i1ff Fdom1F:
5 4 ffvelcdmda Fdom1xFx
6 5 biantrurd Fdom1x0FxFx0Fx
7 elrege0 Fx0+∞Fx0Fx
8 6 7 bitr4di Fdom1x0FxFx0+∞
9 4 adantr Fdom1xF:
10 ffn F:FFn
11 elpreima FFnxF-10+∞xFx0+∞
12 9 10 11 3syl Fdom1xxF-10+∞xFx0+∞
13 3 8 12 3bitr4d Fdom1x0FxxF-10+∞
14 13 ifbid Fdom1xif0FxFx0=ifxF-10+∞Fx0
15 14 mpteq2dva Fdom1xif0FxFx0=xifxF-10+∞Fx0
16 1 15 eqtrid Fdom1G=xifxF-10+∞Fx0
17 i1fima Fdom1F-10+∞domvol
18 eqid xifxF-10+∞Fx0=xifxF-10+∞Fx0
19 18 i1fres Fdom1F-10+∞domvolxifxF-10+∞Fx0dom1
20 17 19 mpdan Fdom1xifxF-10+∞Fx0dom1
21 16 20 eqeltrd Fdom1Gdom1