Metamath Proof Explorer


Theorem i1fres

Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside A .) (Contributed by Mario Carneiro, 29-Jun-2014)

Ref Expression
Hypothesis i1fres.1 G = x if x A F x 0
Assertion i1fres F dom 1 A dom vol G dom 1

Proof

Step Hyp Ref Expression
1 i1fres.1 G = x if x A F x 0
2 i1ff F dom 1 F :
3 2 adantr F dom 1 A dom vol F :
4 3 ffnd F dom 1 A dom vol F Fn
5 fnfvelrn F Fn x F x ran F
6 4 5 sylan F dom 1 A dom vol x F x ran F
7 i1f0rn F dom 1 0 ran F
8 7 ad2antrr F dom 1 A dom vol x 0 ran F
9 6 8 ifcld F dom 1 A dom vol x if x A F x 0 ran F
10 9 1 fmptd F dom 1 A dom vol G : ran F
11 3 frnd F dom 1 A dom vol ran F
12 10 11 fssd F dom 1 A dom vol G :
13 i1frn F dom 1 ran F Fin
14 13 adantr F dom 1 A dom vol ran F Fin
15 10 frnd F dom 1 A dom vol ran G ran F
16 14 15 ssfid F dom 1 A dom vol ran G Fin
17 eleq1w x = z x A z A
18 fveq2 x = z F x = F z
19 17 18 ifbieq1d x = z if x A F x 0 = if z A F z 0
20 fvex F z V
21 c0ex 0 V
22 20 21 ifex if z A F z 0 V
23 19 1 22 fvmpt z G z = if z A F z 0
24 23 adantl F dom 1 A dom vol y ran G 0 z G z = if z A F z 0
25 24 eqeq1d F dom 1 A dom vol y ran G 0 z G z = y if z A F z 0 = y
26 eldifsni y ran G 0 y 0
27 26 ad2antlr F dom 1 A dom vol y ran G 0 z y 0
28 27 necomd F dom 1 A dom vol y ran G 0 z 0 y
29 iffalse ¬ z A if z A F z 0 = 0
30 29 neeq1d ¬ z A if z A F z 0 y 0 y
31 28 30 syl5ibrcom F dom 1 A dom vol y ran G 0 z ¬ z A if z A F z 0 y
32 31 necon4bd F dom 1 A dom vol y ran G 0 z if z A F z 0 = y z A
33 32 pm4.71rd F dom 1 A dom vol y ran G 0 z if z A F z 0 = y z A if z A F z 0 = y
34 25 33 bitrd F dom 1 A dom vol y ran G 0 z G z = y z A if z A F z 0 = y
35 iftrue z A if z A F z 0 = F z
36 35 eqeq1d z A if z A F z 0 = y F z = y
37 36 pm5.32i z A if z A F z 0 = y z A F z = y
38 34 37 bitrdi F dom 1 A dom vol y ran G 0 z G z = y z A F z = y
39 38 pm5.32da F dom 1 A dom vol y ran G 0 z G z = y z z A F z = y
40 an12 z z A F z = y z A z F z = y
41 39 40 bitrdi F dom 1 A dom vol y ran G 0 z G z = y z A z F z = y
42 10 ffnd F dom 1 A dom vol G Fn
43 42 adantr F dom 1 A dom vol y ran G 0 G Fn
44 fniniseg G Fn z G -1 y z G z = y
45 43 44 syl F dom 1 A dom vol y ran G 0 z G -1 y z G z = y
46 4 adantr F dom 1 A dom vol y ran G 0 F Fn
47 fniniseg F Fn z F -1 y z F z = y
48 46 47 syl F dom 1 A dom vol y ran G 0 z F -1 y z F z = y
49 48 anbi2d F dom 1 A dom vol y ran G 0 z A z F -1 y z A z F z = y
50 41 45 49 3bitr4d F dom 1 A dom vol y ran G 0 z G -1 y z A z F -1 y
51 elin z A F -1 y z A z F -1 y
52 50 51 bitr4di F dom 1 A dom vol y ran G 0 z G -1 y z A F -1 y
53 52 eqrdv F dom 1 A dom vol y ran G 0 G -1 y = A F -1 y
54 simplr F dom 1 A dom vol y ran G 0 A dom vol
55 i1fima F dom 1 F -1 y dom vol
56 55 ad2antrr F dom 1 A dom vol y ran G 0 F -1 y dom vol
57 inmbl A dom vol F -1 y dom vol A F -1 y dom vol
58 54 56 57 syl2anc F dom 1 A dom vol y ran G 0 A F -1 y dom vol
59 53 58 eqeltrd F dom 1 A dom vol y ran G 0 G -1 y dom vol
60 53 fveq2d F dom 1 A dom vol y ran G 0 vol G -1 y = vol A F -1 y
61 mblvol A F -1 y dom vol vol A F -1 y = vol * A F -1 y
62 58 61 syl F dom 1 A dom vol y ran G 0 vol A F -1 y = vol * A F -1 y
63 60 62 eqtrd F dom 1 A dom vol y ran G 0 vol G -1 y = vol * A F -1 y
64 inss2 A F -1 y F -1 y
65 mblss F -1 y dom vol F -1 y
66 56 65 syl F dom 1 A dom vol y ran G 0 F -1 y
67 mblvol F -1 y dom vol vol F -1 y = vol * F -1 y
68 56 67 syl F dom 1 A dom vol y ran G 0 vol F -1 y = vol * F -1 y
69 i1fima2sn F dom 1 y ran G 0 vol F -1 y
70 69 adantlr F dom 1 A dom vol y ran G 0 vol F -1 y
71 68 70 eqeltrrd F dom 1 A dom vol y ran G 0 vol * F -1 y
72 ovolsscl A F -1 y F -1 y F -1 y vol * F -1 y vol * A F -1 y
73 64 66 71 72 mp3an2i F dom 1 A dom vol y ran G 0 vol * A F -1 y
74 63 73 eqeltrd F dom 1 A dom vol y ran G 0 vol G -1 y
75 12 16 59 74 i1fd F dom 1 A dom vol G dom 1