| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fres.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 2 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐹 : ℝ ⟶ ℝ ) |
| 4 |
3
|
ffnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐹 Fn ℝ ) |
| 5 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 6 |
4 5
|
sylan |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 7 |
|
i1f0rn |
⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ran 𝐹 ) |
| 9 |
6 8
|
ifcld |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ran 𝐹 ) |
| 10 |
9 1
|
fmptd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 : ℝ ⟶ ran 𝐹 ) |
| 11 |
3
|
frnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐹 ⊆ ℝ ) |
| 12 |
10 11
|
fssd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 : ℝ ⟶ ℝ ) |
| 13 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐹 ∈ Fin ) |
| 15 |
10
|
frnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐺 ⊆ ran 𝐹 ) |
| 16 |
14 15
|
ssfid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐺 ∈ Fin ) |
| 17 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 19 |
17 18
|
ifbieq1d |
⊢ ( 𝑥 = 𝑧 → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
| 20 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
| 21 |
|
c0ex |
⊢ 0 ∈ V |
| 22 |
20 21
|
ifex |
⊢ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ∈ V |
| 23 |
19 1 22
|
fvmpt |
⊢ ( 𝑧 ∈ ℝ → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
| 25 |
24
|
eqeq1d |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) |
| 26 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) → 𝑦 ≠ 0 ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ≠ 0 ) |
| 28 |
27
|
necomd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → 0 ≠ 𝑦 ) |
| 29 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 0 ) |
| 30 |
29
|
neeq1d |
⊢ ( ¬ 𝑧 ∈ 𝐴 → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ≠ 𝑦 ↔ 0 ≠ 𝑦 ) ) |
| 31 |
28 30
|
syl5ibrcom |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ≠ 𝑦 ) ) |
| 32 |
31
|
necon4bd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 → 𝑧 ∈ 𝐴 ) ) |
| 33 |
32
|
pm4.71rd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) ) |
| 34 |
25 33
|
bitrd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) ) |
| 35 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 36 |
35
|
eqeq1d |
⊢ ( 𝑧 ∈ 𝐴 → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 37 |
36
|
pm5.32i |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 38 |
34 37
|
bitrdi |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 39 |
38
|
pm5.32da |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 40 |
|
an12 |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 41 |
39 40
|
bitrdi |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 42 |
10
|
ffnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 Fn ℝ ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐺 Fn ℝ ) |
| 44 |
|
fniniseg |
⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 46 |
4
|
adantr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
| 47 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 49 |
48
|
anbi2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 50 |
41 45 49
|
3bitr4d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 51 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 52 |
50 51
|
bitr4di |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ 𝑧 ∈ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 53 |
52
|
eqrdv |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 54 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐴 ∈ dom vol ) |
| 55 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 57 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) → ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol ) |
| 58 |
54 56 57
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol ) |
| 59 |
53 58
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑦 } ) ∈ dom vol ) |
| 60 |
53
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 61 |
|
mblvol |
⊢ ( ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 62 |
58 61
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 63 |
60 62
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 64 |
|
inss2 |
⊢ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) |
| 65 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) |
| 66 |
56 65
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) |
| 67 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 68 |
56 67
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 69 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 70 |
69
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 71 |
68 70
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 72 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) ∧ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ∈ ℝ ) |
| 73 |
64 66 71 72
|
mp3an2i |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ∈ ℝ ) |
| 74 |
63 73
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) ∈ ℝ ) |
| 75 |
12 16 59 74
|
i1fd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 ∈ dom ∫1 ) |