Metamath Proof Explorer


Theorem iblempty

Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iblempty
|- (/) e. L^1

Proof

Step Hyp Ref Expression
1 mbf0
 |-  (/) e. MblFn
2 fconstmpt
 |-  ( RR X. { 0 } ) = ( x e. RR |-> 0 )
3 2 eqcomi
 |-  ( x e. RR |-> 0 ) = ( RR X. { 0 } )
4 3 fveq2i
 |-  ( S.2 ` ( x e. RR |-> 0 ) ) = ( S.2 ` ( RR X. { 0 } ) )
5 itg20
 |-  ( S.2 ` ( RR X. { 0 } ) ) = 0
6 4 5 eqtri
 |-  ( S.2 ` ( x e. RR |-> 0 ) ) = 0
7 0re
 |-  0 e. RR
8 6 7 eqeltri
 |-  ( S.2 ` ( x e. RR |-> 0 ) ) e. RR
9 8 rgenw
 |-  A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR
10 noel
 |-  -. x e. (/)
11 10 intnanr
 |-  -. ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) )
12 11 iffalsei
 |-  if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = 0
13 12 eqcomi
 |-  0 = if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 )
14 13 a1i
 |-  ( ( T. /\ x e. RR ) -> 0 = if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) )
15 14 mpteq2dva
 |-  ( T. -> ( x e. RR |-> 0 ) = ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) )
16 eqidd
 |-  ( ( T. /\ x e. (/) ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) )
17 dm0
 |-  dom (/) = (/)
18 17 a1i
 |-  ( T. -> dom (/) = (/) )
19 10 intnan
 |-  -. ( T. /\ x e. (/) )
20 19 pm2.21i
 |-  ( ( T. /\ x e. (/) ) -> ( (/) ` x ) = 0 )
21 15 16 18 20 isibl
 |-  ( T. -> ( (/) e. L^1 <-> ( (/) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR ) ) )
22 21 mptru
 |-  ( (/) e. L^1 <-> ( (/) e. MblFn /\ A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> 0 ) ) e. RR ) )
23 1 9 22 mpbir2an
 |-  (/) e. L^1