Metamath Proof Explorer


Theorem iblsubnc

Description: Choice-free analogue of iblsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1
|- ( ( ph /\ x e. A ) -> B e. V )
ibladdnc.2
|- ( ph -> ( x e. A |-> B ) e. L^1 )
ibladdnc.3
|- ( ( ph /\ x e. A ) -> C e. V )
ibladdnc.4
|- ( ph -> ( x e. A |-> C ) e. L^1 )
iblsubnc.m
|- ( ph -> ( x e. A |-> ( B - C ) ) e. MblFn )
Assertion iblsubnc
|- ( ph -> ( x e. A |-> ( B - C ) ) e. L^1 )

Proof

Step Hyp Ref Expression
1 ibladdnc.1
 |-  ( ( ph /\ x e. A ) -> B e. V )
2 ibladdnc.2
 |-  ( ph -> ( x e. A |-> B ) e. L^1 )
3 ibladdnc.3
 |-  ( ( ph /\ x e. A ) -> C e. V )
4 ibladdnc.4
 |-  ( ph -> ( x e. A |-> C ) e. L^1 )
5 iblsubnc.m
 |-  ( ph -> ( x e. A |-> ( B - C ) ) e. MblFn )
6 iblmbf
 |-  ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn )
7 2 6 syl
 |-  ( ph -> ( x e. A |-> B ) e. MblFn )
8 7 1 mbfmptcl
 |-  ( ( ph /\ x e. A ) -> B e. CC )
9 iblmbf
 |-  ( ( x e. A |-> C ) e. L^1 -> ( x e. A |-> C ) e. MblFn )
10 4 9 syl
 |-  ( ph -> ( x e. A |-> C ) e. MblFn )
11 10 3 mbfmptcl
 |-  ( ( ph /\ x e. A ) -> C e. CC )
12 8 11 negsubd
 |-  ( ( ph /\ x e. A ) -> ( B + -u C ) = ( B - C ) )
13 12 mpteq2dva
 |-  ( ph -> ( x e. A |-> ( B + -u C ) ) = ( x e. A |-> ( B - C ) ) )
14 11 negcld
 |-  ( ( ph /\ x e. A ) -> -u C e. CC )
15 3 4 iblneg
 |-  ( ph -> ( x e. A |-> -u C ) e. L^1 )
16 13 5 eqeltrd
 |-  ( ph -> ( x e. A |-> ( B + -u C ) ) e. MblFn )
17 8 2 14 15 16 ibladdnc
 |-  ( ph -> ( x e. A |-> ( B + -u C ) ) e. L^1 )
18 13 17 eqeltrrd
 |-  ( ph -> ( x e. A |-> ( B - C ) ) e. L^1 )