Step |
Hyp |
Ref |
Expression |
1 |
|
ibladdnc.1 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
2 |
|
ibladdnc.2 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
3 |
|
ibladdnc.3 |
|- ( ( ph /\ x e. A ) -> C e. V ) |
4 |
|
ibladdnc.4 |
|- ( ph -> ( x e. A |-> C ) e. L^1 ) |
5 |
|
iblsubnc.m |
|- ( ph -> ( x e. A |-> ( B - C ) ) e. MblFn ) |
6 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
7 |
2 6
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
8 |
7 1
|
mbfmptcl |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
9 |
|
iblmbf |
|- ( ( x e. A |-> C ) e. L^1 -> ( x e. A |-> C ) e. MblFn ) |
10 |
4 9
|
syl |
|- ( ph -> ( x e. A |-> C ) e. MblFn ) |
11 |
10 3
|
mbfmptcl |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
12 |
8 11
|
negsubd |
|- ( ( ph /\ x e. A ) -> ( B + -u C ) = ( B - C ) ) |
13 |
12
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( B + -u C ) ) = ( x e. A |-> ( B - C ) ) ) |
14 |
11
|
negcld |
|- ( ( ph /\ x e. A ) -> -u C e. CC ) |
15 |
3 4
|
iblneg |
|- ( ph -> ( x e. A |-> -u C ) e. L^1 ) |
16 |
13 5
|
eqeltrd |
|- ( ph -> ( x e. A |-> ( B + -u C ) ) e. MblFn ) |
17 |
8 2 14 15 16
|
ibladdnc |
|- ( ph -> ( x e. A |-> ( B + -u C ) ) e. L^1 ) |
18 |
13 17
|
eqeltrrd |
|- ( ph -> ( x e. A |-> ( B - C ) ) e. L^1 ) |