Metamath Proof Explorer


Theorem iblsubnc

Description: Choice-free analogue of iblsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
ibladdnc.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
ibladdnc.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝑉 )
ibladdnc.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
iblsubnc.m ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ MblFn )
Assertion iblsubnc ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 ibladdnc.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 ibladdnc.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
3 ibladdnc.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝑉 )
4 ibladdnc.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
5 iblsubnc.m ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ MblFn )
6 iblmbf ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
7 2 6 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
8 7 1 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
9 iblmbf ( ( 𝑥𝐴𝐶 ) ∈ 𝐿1 → ( 𝑥𝐴𝐶 ) ∈ MblFn )
10 4 9 syl ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ MblFn )
11 10 3 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
12 8 11 negsubd ( ( 𝜑𝑥𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵𝐶 ) )
13 12 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) )
14 11 negcld ( ( 𝜑𝑥𝐴 ) → - 𝐶 ∈ ℂ )
15 3 4 iblneg ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐶 ) ∈ 𝐿1 )
16 13 5 eqeltrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ MblFn )
17 8 2 14 15 16 ibladdnc ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ 𝐿1 )
18 13 17 eqeltrrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ 𝐿1 )