Step |
Hyp |
Ref |
Expression |
1 |
|
ibladdnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
ibladdnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
3 |
|
ibladdnc.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
ibladdnc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
5 |
|
ibladdnc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
6 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
8 |
7 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
9 |
8
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
10 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
12 |
11 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
13 |
12
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
14 |
8 12
|
readdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
15 |
8
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
16 |
7 15
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
18 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
19 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
20 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
21 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
22 |
18 19 20 21 1
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
23 |
2 22
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
24 |
23
|
simp2d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
26 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) |
27 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) |
28 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) |
29 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) |
30 |
26 27 28 29 3
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
31 |
4 30
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) ) |
32 |
31
|
simp2d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) |
33 |
32
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
34 |
9 13 14 17 25 33
|
ibladdnclem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
35 |
9
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
36 |
13
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
37 |
14
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = - ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
38 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
39 |
13
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℂ ) |
40 |
38 39
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) = ( - ( ℜ ‘ 𝐵 ) + - ( ℜ ‘ 𝐶 ) ) ) |
41 |
37 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( - ( ℜ ‘ 𝐵 ) + - ( ℜ ‘ 𝐶 ) ) ) |
42 |
9 17
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
43 |
24
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
44 |
32
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
45 |
35 36 41 42 43 44
|
ibladdnclem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
46 |
34 45
|
jca |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ) |
47 |
8
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
48 |
12
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
49 |
8 12
|
imaddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
50 |
16
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
51 |
23
|
simp3d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
52 |
51
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
53 |
31
|
simp3d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) |
54 |
53
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
55 |
47 48 49 50 52 54
|
ibladdnclem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
56 |
47
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
57 |
48
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
58 |
49
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = - ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
59 |
47
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
60 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
61 |
59 60
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) = ( - ( ℑ ‘ 𝐵 ) + - ( ℑ ‘ 𝐶 ) ) ) |
62 |
58 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( - ( ℑ ‘ 𝐵 ) + - ( ℑ ‘ 𝐶 ) ) ) |
63 |
47 50
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
64 |
51
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
65 |
53
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
66 |
56 57 62 63 64 65
|
ibladdnclem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
67 |
55 66
|
jca |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ) |
68 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
69 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
70 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
71 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
72 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ V ) |
73 |
68 69 70 71 72
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
74 |
5 46 67 73
|
mpbir3and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |