| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
ibladdnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
ibladdnc.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
ibladdnc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 5 |
|
ibladdnc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
| 6 |
|
itgaddnclem.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 7 |
|
itgaddnclem.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 8 |
|
itgaddnclem.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 9 |
|
itgaddnclem.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
| 10 |
6 7
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 11 |
1 2 3 4 5
|
ibladdnc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
| 12 |
6 7 8 9
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( 𝐵 + 𝐶 ) ) |
| 13 |
10 11 12
|
itgposval |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
| 14 |
6 2 8
|
itgposval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 15 |
7 4 9
|
itgposval |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) |
| 16 |
14 15
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
| 17 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 19 |
18 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 20 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 22 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 24 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 25 |
6 8 24
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 26 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 28 |
25 27
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 30 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 32 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 34 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 35 |
34
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 36 |
35 18
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 37 |
21 23 29 33 36
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 38 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 39 |
38
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 40 |
6 8
|
iblpos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
| 41 |
2 40
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
| 42 |
41
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 43 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 44 |
7 9 43
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 45 |
44 27
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 47 |
46
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 48 |
7 9
|
iblpos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) ) ) |
| 49 |
4 48
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) ) |
| 50 |
49
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 51 |
37 39 42 47 50
|
itg2addnc |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) ) |
| 52 |
|
reex |
⊢ ℝ ∈ V |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 54 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 55 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 56 |
53 38 46 54 55
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) |
| 57 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 58 |
34 57
|
oveq12d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 59 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) = ( 𝐵 + 𝐶 ) ) |
| 60 |
58 59
|
eqtr4d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 61 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 62 |
32 61
|
oveq12d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
| 63 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 64 |
62 63
|
eqtrdi |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = 0 ) |
| 65 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) = 0 ) |
| 66 |
64 65
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 67 |
60 66
|
pm2.61i |
⊢ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) |
| 68 |
67
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) + if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 69 |
56 68
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) |
| 70 |
69
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
| 71 |
16 51 70
|
3eqtr2d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐵 + 𝐶 ) , 0 ) ) ) ) |
| 72 |
13 71
|
eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |