| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
ibladdnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
ibladdnc.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
ibladdnc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 5 |
|
ibladdnc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
| 6 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 8 |
7 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 9 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 11 |
10 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 |
8 11
|
readdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
| 13 |
12
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ∫ 𝐴 ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) d 𝑥 ) |
| 14 |
8
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 15 |
8
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 16 |
2 15
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 18 |
11
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 19 |
11
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) ) ) |
| 20 |
4 19
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) ) |
| 21 |
20
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ) |
| 22 |
8 11
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 23 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) |
| 24 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ℜ : ℂ ⟶ ℝ ) |
| 26 |
25
|
feqmptd |
⊢ ( 𝜑 → ℜ = ( 𝑦 ∈ ℂ ↦ ( ℜ ‘ 𝑦 ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐵 + 𝐶 ) → ( ℜ ‘ 𝑦 ) = ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) |
| 28 |
22 23 26 27
|
fmptco |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) ) |
| 29 |
12
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) ) |
| 30 |
28 29
|
eqtrd |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) ) |
| 31 |
22
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) : 𝐴 ⟶ ℂ ) |
| 32 |
|
ismbfcn |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) : 𝐴 ⟶ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ) ) ) |
| 34 |
5 33
|
mpbid |
⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ) ) |
| 35 |
34
|
simpld |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ) |
| 36 |
30 35
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) ∈ MblFn ) |
| 37 |
14 17 18 21 36 14 18
|
itgaddnclem2 |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) ) |
| 38 |
13 37
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) ) |
| 39 |
8 11
|
imaddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
| 40 |
39
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ∫ 𝐴 ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) d 𝑥 ) |
| 41 |
8
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 42 |
16
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 43 |
11
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 44 |
20
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) |
| 45 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → ℑ : ℂ ⟶ ℝ ) |
| 47 |
46
|
feqmptd |
⊢ ( 𝜑 → ℑ = ( 𝑦 ∈ ℂ ↦ ( ℑ ‘ 𝑦 ) ) ) |
| 48 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐵 + 𝐶 ) → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) |
| 49 |
22 23 47 48
|
fmptco |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) ) |
| 50 |
39
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) ) |
| 51 |
49 50
|
eqtrd |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) ) |
| 52 |
34
|
simprd |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ MblFn ) |
| 53 |
51 52
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) ∈ MblFn ) |
| 54 |
41 42 43 44 53 41 43
|
itgaddnclem2 |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) |
| 55 |
40 54
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) = ( i · ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 57 |
|
ax-icn |
⊢ i ∈ ℂ |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 59 |
41 42
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 60 |
43 44
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) |
| 61 |
58 59 60
|
adddid |
⊢ ( 𝜑 → ( i · ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) = ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 62 |
56 61
|
eqtrd |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) = ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 63 |
38 62
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 64 |
14 17
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 65 |
18 21
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) |
| 66 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 67 |
57 59 66
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 68 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ∈ ℂ ) |
| 69 |
57 60 68
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ∈ ℂ ) |
| 70 |
64 65 67 69
|
add4d |
⊢ ( 𝜑 → ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 71 |
63 70
|
eqtrd |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 72 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ V ) |
| 73 |
1 2 3 4 5
|
ibladdnc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
| 74 |
72 73
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) ) |
| 75 |
1 2
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 76 |
3 4
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 78 |
71 74 77
|
3eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |