| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
ibladdnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
ibladdnc.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
ibladdnc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 5 |
|
ibladdnc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
| 6 |
|
itgaddnclem.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 7 |
|
itgaddnclem.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 8 |
|
max0sub |
⊢ ( 𝐵 ∈ ℝ → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) |
| 9 |
6 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) |
| 10 |
|
max0sub |
⊢ ( 𝐶 ∈ ℝ → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
| 11 |
7 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
| 12 |
9 11
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( 𝐵 + 𝐶 ) ) |
| 13 |
|
0re |
⊢ 0 ∈ ℝ |
| 14 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 15 |
6 13 14
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℂ ) |
| 17 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 18 |
7 13 17
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
| 20 |
6
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 21 |
|
ifcl |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 22 |
20 13 21
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℂ ) |
| 24 |
7
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℝ ) |
| 25 |
|
ifcl |
⊢ ( ( - 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
| 26 |
24 13 25
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
| 27 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℂ ) |
| 28 |
16 19 23 27
|
addsub4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) − ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 29 |
6 7
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 30 |
|
max0sub |
⊢ ( ( 𝐵 + 𝐶 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 32 |
12 28 31
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) − ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 33 |
29
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 34 |
|
ifcl |
⊢ ( ( - ( 𝐵 + 𝐶 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) |
| 35 |
33 13 34
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) |
| 36 |
35
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ∈ ℂ ) |
| 37 |
15 18
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
| 38 |
37
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℂ ) |
| 39 |
|
ifcl |
⊢ ( ( ( 𝐵 + 𝐶 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) |
| 40 |
29 13 39
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ∈ ℂ ) |
| 42 |
22 26
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ ℝ ) |
| 43 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ ℂ ) |
| 44 |
36 38 41 43
|
addsubeq4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ↔ ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) − if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) = ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) − ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) ) |
| 45 |
32 44
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 46 |
45
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) d 𝑥 = ∫ 𝐴 ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) d 𝑥 ) |
| 47 |
6 2 7 4 5
|
ibladdnc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
| 48 |
29
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) ) ) |
| 49 |
47 48
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) ) |
| 50 |
49
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) |
| 51 |
6
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) ) |
| 52 |
2 51
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) |
| 53 |
52
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ) |
| 54 |
7
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ 𝐿1 ) ) ) |
| 55 |
4 54
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ 𝐿1 ) ) |
| 56 |
55
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 57 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 58 |
2 57
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 59 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 60 |
4 59
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 61 |
58 6 60 7 5
|
mbfposadd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ MblFn ) |
| 62 |
15 53 18 56 61
|
ibladdnc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ 𝐿1 ) |
| 63 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 64 |
13 6 63
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 65 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 66 |
13 7 65
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 67 |
15 18 64 66
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 68 |
67
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + if ( 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) = ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 70 |
69
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + if ( 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
| 71 |
29 5
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
| 72 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 73 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 74 |
72 73
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐵 + 𝐶 ) = ( - 𝐵 + - 𝐶 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( ( - 𝐵 + - 𝐶 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 76 |
20
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 77 |
24
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
| 78 |
76 77 16 19
|
add4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝐵 + - 𝐶 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) + ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 79 |
|
negeq |
⊢ ( 𝐵 = 0 → - 𝐵 = - 0 ) |
| 80 |
|
neg0 |
⊢ - 0 = 0 |
| 81 |
79 80
|
eqtrdi |
⊢ ( 𝐵 = 0 → - 𝐵 = 0 ) |
| 82 |
|
0le0 |
⊢ 0 ≤ 0 |
| 83 |
82 81
|
breqtrrid |
⊢ ( 𝐵 = 0 → 0 ≤ - 𝐵 ) |
| 84 |
83
|
iftrued |
⊢ ( 𝐵 = 0 → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) = - 𝐵 ) |
| 85 |
|
id |
⊢ ( 𝐵 = 0 → 𝐵 = 0 ) |
| 86 |
82 85
|
breqtrrid |
⊢ ( 𝐵 = 0 → 0 ≤ 𝐵 ) |
| 87 |
86
|
iftrued |
⊢ ( 𝐵 = 0 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = 𝐵 ) |
| 88 |
87 85
|
eqtrd |
⊢ ( 𝐵 = 0 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = 0 ) |
| 89 |
81 88
|
oveq12d |
⊢ ( 𝐵 = 0 → ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 0 + 0 ) ) |
| 90 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 91 |
89 90
|
eqtrdi |
⊢ ( 𝐵 = 0 → ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = 0 ) |
| 92 |
81 84 91
|
3eqtr4rd |
⊢ ( 𝐵 = 0 → ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 93 |
92
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 = 0 ) → ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 94 |
|
ovif2 |
⊢ ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = if ( 0 ≤ 𝐵 , ( - 𝐵 + 𝐵 ) , ( - 𝐵 + 0 ) ) |
| 95 |
72
|
negne0bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≠ 0 ↔ - 𝐵 ≠ 0 ) ) |
| 96 |
95
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → - 𝐵 ≠ 0 ) |
| 97 |
6
|
le0neg2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ - 𝐵 ≤ 0 ) ) |
| 98 |
|
leloe |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐵 ≤ 0 ↔ ( - 𝐵 < 0 ∨ - 𝐵 = 0 ) ) ) |
| 99 |
20 13 98
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ 0 ↔ ( - 𝐵 < 0 ∨ - 𝐵 = 0 ) ) ) |
| 100 |
97 99
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ ( - 𝐵 < 0 ∨ - 𝐵 = 0 ) ) ) |
| 101 |
|
df-ne |
⊢ ( - 𝐵 ≠ 0 ↔ ¬ - 𝐵 = 0 ) |
| 102 |
|
biorf |
⊢ ( ¬ - 𝐵 = 0 → ( - 𝐵 < 0 ↔ ( - 𝐵 = 0 ∨ - 𝐵 < 0 ) ) ) |
| 103 |
101 102
|
sylbi |
⊢ ( - 𝐵 ≠ 0 → ( - 𝐵 < 0 ↔ ( - 𝐵 = 0 ∨ - 𝐵 < 0 ) ) ) |
| 104 |
|
orcom |
⊢ ( ( - 𝐵 = 0 ∨ - 𝐵 < 0 ) ↔ ( - 𝐵 < 0 ∨ - 𝐵 = 0 ) ) |
| 105 |
103 104
|
bitr2di |
⊢ ( - 𝐵 ≠ 0 → ( ( - 𝐵 < 0 ∨ - 𝐵 = 0 ) ↔ - 𝐵 < 0 ) ) |
| 106 |
100 105
|
sylan9bb |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ - 𝐵 ≠ 0 ) → ( 0 ≤ 𝐵 ↔ - 𝐵 < 0 ) ) |
| 107 |
96 106
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 0 ≤ 𝐵 ↔ - 𝐵 < 0 ) ) |
| 108 |
|
ltnle |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐵 < 0 ↔ ¬ 0 ≤ - 𝐵 ) ) |
| 109 |
20 13 108
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 < 0 ↔ ¬ 0 ≤ - 𝐵 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( - 𝐵 < 0 ↔ ¬ 0 ≤ - 𝐵 ) ) |
| 111 |
107 110
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 0 ≤ 𝐵 ↔ ¬ 0 ≤ - 𝐵 ) ) |
| 112 |
76 72
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 + 𝐵 ) = ( 𝐵 + - 𝐵 ) ) |
| 113 |
72
|
negidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + - 𝐵 ) = 0 ) |
| 114 |
112 113
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 + 𝐵 ) = 0 ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( - 𝐵 + 𝐵 ) = 0 ) |
| 116 |
76
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 + 0 ) = - 𝐵 ) |
| 117 |
116
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( - 𝐵 + 0 ) = - 𝐵 ) |
| 118 |
111 115 117
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → if ( 0 ≤ 𝐵 , ( - 𝐵 + 𝐵 ) , ( - 𝐵 + 0 ) ) = if ( ¬ 0 ≤ - 𝐵 , 0 , - 𝐵 ) ) |
| 119 |
|
ifnot |
⊢ if ( ¬ 0 ≤ - 𝐵 , 0 , - 𝐵 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) |
| 120 |
118 119
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → if ( 0 ≤ 𝐵 , ( - 𝐵 + 𝐵 ) , ( - 𝐵 + 0 ) ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 121 |
94 120
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 122 |
93 121
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 123 |
|
negeq |
⊢ ( 𝐶 = 0 → - 𝐶 = - 0 ) |
| 124 |
123 80
|
eqtrdi |
⊢ ( 𝐶 = 0 → - 𝐶 = 0 ) |
| 125 |
82 124
|
breqtrrid |
⊢ ( 𝐶 = 0 → 0 ≤ - 𝐶 ) |
| 126 |
125
|
iftrued |
⊢ ( 𝐶 = 0 → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) = - 𝐶 ) |
| 127 |
|
id |
⊢ ( 𝐶 = 0 → 𝐶 = 0 ) |
| 128 |
82 127
|
breqtrrid |
⊢ ( 𝐶 = 0 → 0 ≤ 𝐶 ) |
| 129 |
128
|
iftrued |
⊢ ( 𝐶 = 0 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = 𝐶 ) |
| 130 |
129 127
|
eqtrd |
⊢ ( 𝐶 = 0 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = 0 ) |
| 131 |
124 130
|
oveq12d |
⊢ ( 𝐶 = 0 → ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
| 132 |
131 90
|
eqtrdi |
⊢ ( 𝐶 = 0 → ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = 0 ) |
| 133 |
124 126 132
|
3eqtr4rd |
⊢ ( 𝐶 = 0 → ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 134 |
133
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 = 0 ) → ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 135 |
|
ovif2 |
⊢ ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐶 , ( - 𝐶 + 𝐶 ) , ( - 𝐶 + 0 ) ) |
| 136 |
73
|
negne0bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≠ 0 ↔ - 𝐶 ≠ 0 ) ) |
| 137 |
136
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → - 𝐶 ≠ 0 ) |
| 138 |
7
|
le0neg2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐶 ↔ - 𝐶 ≤ 0 ) ) |
| 139 |
|
leloe |
⊢ ( ( - 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐶 ≤ 0 ↔ ( - 𝐶 < 0 ∨ - 𝐶 = 0 ) ) ) |
| 140 |
24 13 139
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐶 ≤ 0 ↔ ( - 𝐶 < 0 ∨ - 𝐶 = 0 ) ) ) |
| 141 |
138 140
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐶 ↔ ( - 𝐶 < 0 ∨ - 𝐶 = 0 ) ) ) |
| 142 |
|
df-ne |
⊢ ( - 𝐶 ≠ 0 ↔ ¬ - 𝐶 = 0 ) |
| 143 |
|
biorf |
⊢ ( ¬ - 𝐶 = 0 → ( - 𝐶 < 0 ↔ ( - 𝐶 = 0 ∨ - 𝐶 < 0 ) ) ) |
| 144 |
142 143
|
sylbi |
⊢ ( - 𝐶 ≠ 0 → ( - 𝐶 < 0 ↔ ( - 𝐶 = 0 ∨ - 𝐶 < 0 ) ) ) |
| 145 |
|
orcom |
⊢ ( ( - 𝐶 = 0 ∨ - 𝐶 < 0 ) ↔ ( - 𝐶 < 0 ∨ - 𝐶 = 0 ) ) |
| 146 |
144 145
|
bitr2di |
⊢ ( - 𝐶 ≠ 0 → ( ( - 𝐶 < 0 ∨ - 𝐶 = 0 ) ↔ - 𝐶 < 0 ) ) |
| 147 |
141 146
|
sylan9bb |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ - 𝐶 ≠ 0 ) → ( 0 ≤ 𝐶 ↔ - 𝐶 < 0 ) ) |
| 148 |
137 147
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 0 ≤ 𝐶 ↔ - 𝐶 < 0 ) ) |
| 149 |
|
ltnle |
⊢ ( ( - 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐶 < 0 ↔ ¬ 0 ≤ - 𝐶 ) ) |
| 150 |
24 13 149
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐶 < 0 ↔ ¬ 0 ≤ - 𝐶 ) ) |
| 151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( - 𝐶 < 0 ↔ ¬ 0 ≤ - 𝐶 ) ) |
| 152 |
148 151
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 0 ≤ 𝐶 ↔ ¬ 0 ≤ - 𝐶 ) ) |
| 153 |
77 73
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐶 + 𝐶 ) = ( 𝐶 + - 𝐶 ) ) |
| 154 |
73
|
negidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 + - 𝐶 ) = 0 ) |
| 155 |
153 154
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐶 + 𝐶 ) = 0 ) |
| 156 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( - 𝐶 + 𝐶 ) = 0 ) |
| 157 |
77
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐶 + 0 ) = - 𝐶 ) |
| 158 |
157
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( - 𝐶 + 0 ) = - 𝐶 ) |
| 159 |
152 156 158
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → if ( 0 ≤ 𝐶 , ( - 𝐶 + 𝐶 ) , ( - 𝐶 + 0 ) ) = if ( ¬ 0 ≤ - 𝐶 , 0 , - 𝐶 ) ) |
| 160 |
|
ifnot |
⊢ if ( ¬ 0 ≤ - 𝐶 , 0 , - 𝐶 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) |
| 161 |
159 160
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → if ( 0 ≤ 𝐶 , ( - 𝐶 + 𝐶 ) , ( - 𝐶 + 0 ) ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 162 |
135 161
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 163 |
134 162
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 164 |
122 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝐵 + if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) + ( - 𝐶 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) |
| 165 |
75 78 164
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) |
| 166 |
165
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 167 |
6 58
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ MblFn ) |
| 168 |
7 60
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ MblFn ) |
| 169 |
74
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( 𝐵 + 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( - 𝐵 + - 𝐶 ) ) ) |
| 170 |
169 71
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - 𝐵 + - 𝐶 ) ) ∈ MblFn ) |
| 171 |
167 20 168 24 170
|
mbfposadd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ∈ MblFn ) |
| 172 |
166 171
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ∈ MblFn ) |
| 173 |
71 33 61 37 172
|
mbfposadd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + if ( 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ∈ MblFn ) |
| 174 |
70 173
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ∈ MblFn ) |
| 175 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐵 + 𝐶 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) |
| 176 |
13 33 175
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) ) |
| 177 |
35 50 37 62 174 35 37 176 67
|
itgaddnclem1 |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ) ) |
| 178 |
49
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) ∈ 𝐿1 ) |
| 179 |
52
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) |
| 180 |
55
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 181 |
22 179 26 180 171
|
ibladdnc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ∈ 𝐿1 ) |
| 182 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 183 |
13 20 182
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 184 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 185 |
13 24 184
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 186 |
22 26 183 185
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) |
| 187 |
186
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , 0 ) = ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) |
| 188 |
187
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + if ( 0 ≤ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , 0 ) ) = ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 189 |
188
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + if ( 0 ≤ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , 0 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) ) |
| 190 |
72 73 23 27
|
add4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) + ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) |
| 191 |
84 81
|
eqtrd |
⊢ ( 𝐵 = 0 → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) = 0 ) |
| 192 |
85 191
|
oveq12d |
⊢ ( 𝐵 = 0 → ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = ( 0 + 0 ) ) |
| 193 |
192 90
|
eqtrdi |
⊢ ( 𝐵 = 0 → ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 0 ) |
| 194 |
85 87 193
|
3eqtr4rd |
⊢ ( 𝐵 = 0 → ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 195 |
194
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 = 0 ) → ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 196 |
|
ovif2 |
⊢ ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = if ( 0 ≤ - 𝐵 , ( 𝐵 + - 𝐵 ) , ( 𝐵 + 0 ) ) |
| 197 |
6
|
le0neg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
| 198 |
|
leloe |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 ≤ 0 ↔ ( 𝐵 < 0 ∨ 𝐵 = 0 ) ) ) |
| 199 |
6 13 198
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 0 ↔ ( 𝐵 < 0 ∨ 𝐵 = 0 ) ) ) |
| 200 |
197 199
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - 𝐵 ↔ ( 𝐵 < 0 ∨ 𝐵 = 0 ) ) ) |
| 201 |
|
df-ne |
⊢ ( 𝐵 ≠ 0 ↔ ¬ 𝐵 = 0 ) |
| 202 |
|
biorf |
⊢ ( ¬ 𝐵 = 0 → ( 𝐵 < 0 ↔ ( 𝐵 = 0 ∨ 𝐵 < 0 ) ) ) |
| 203 |
201 202
|
sylbi |
⊢ ( 𝐵 ≠ 0 → ( 𝐵 < 0 ↔ ( 𝐵 = 0 ∨ 𝐵 < 0 ) ) ) |
| 204 |
|
orcom |
⊢ ( ( 𝐵 = 0 ∨ 𝐵 < 0 ) ↔ ( 𝐵 < 0 ∨ 𝐵 = 0 ) ) |
| 205 |
203 204
|
bitr2di |
⊢ ( 𝐵 ≠ 0 → ( ( 𝐵 < 0 ∨ 𝐵 = 0 ) ↔ 𝐵 < 0 ) ) |
| 206 |
200 205
|
sylan9bb |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 0 ≤ - 𝐵 ↔ 𝐵 < 0 ) ) |
| 207 |
|
ltnle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 208 |
6 13 207
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 209 |
208
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 210 |
206 209
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 0 ≤ - 𝐵 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 211 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 + - 𝐵 ) = 0 ) |
| 212 |
72
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 213 |
212
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 214 |
210 211 213
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → if ( 0 ≤ - 𝐵 , ( 𝐵 + - 𝐵 ) , ( 𝐵 + 0 ) ) = if ( ¬ 0 ≤ 𝐵 , 0 , 𝐵 ) ) |
| 215 |
|
ifnot |
⊢ if ( ¬ 0 ≤ 𝐵 , 0 , 𝐵 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
| 216 |
214 215
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → if ( 0 ≤ - 𝐵 , ( 𝐵 + - 𝐵 ) , ( 𝐵 + 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 217 |
196 216
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 218 |
195 217
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 219 |
126 124
|
eqtrd |
⊢ ( 𝐶 = 0 → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) = 0 ) |
| 220 |
127 219
|
oveq12d |
⊢ ( 𝐶 = 0 → ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
| 221 |
220 90
|
eqtrdi |
⊢ ( 𝐶 = 0 → ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 0 ) |
| 222 |
127 129 221
|
3eqtr4rd |
⊢ ( 𝐶 = 0 → ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 223 |
222
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 = 0 ) → ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 224 |
|
ovif2 |
⊢ ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = if ( 0 ≤ - 𝐶 , ( 𝐶 + - 𝐶 ) , ( 𝐶 + 0 ) ) |
| 225 |
7
|
le0neg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 0 ↔ 0 ≤ - 𝐶 ) ) |
| 226 |
|
leloe |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐶 ≤ 0 ↔ ( 𝐶 < 0 ∨ 𝐶 = 0 ) ) ) |
| 227 |
7 13 226
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 0 ↔ ( 𝐶 < 0 ∨ 𝐶 = 0 ) ) ) |
| 228 |
225 227
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ - 𝐶 ↔ ( 𝐶 < 0 ∨ 𝐶 = 0 ) ) ) |
| 229 |
|
df-ne |
⊢ ( 𝐶 ≠ 0 ↔ ¬ 𝐶 = 0 ) |
| 230 |
|
biorf |
⊢ ( ¬ 𝐶 = 0 → ( 𝐶 < 0 ↔ ( 𝐶 = 0 ∨ 𝐶 < 0 ) ) ) |
| 231 |
229 230
|
sylbi |
⊢ ( 𝐶 ≠ 0 → ( 𝐶 < 0 ↔ ( 𝐶 = 0 ∨ 𝐶 < 0 ) ) ) |
| 232 |
|
orcom |
⊢ ( ( 𝐶 = 0 ∨ 𝐶 < 0 ) ↔ ( 𝐶 < 0 ∨ 𝐶 = 0 ) ) |
| 233 |
231 232
|
bitr2di |
⊢ ( 𝐶 ≠ 0 → ( ( 𝐶 < 0 ∨ 𝐶 = 0 ) ↔ 𝐶 < 0 ) ) |
| 234 |
228 233
|
sylan9bb |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 0 ≤ - 𝐶 ↔ 𝐶 < 0 ) ) |
| 235 |
|
ltnle |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
| 236 |
7 13 235
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
| 237 |
236
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
| 238 |
234 237
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 0 ≤ - 𝐶 ↔ ¬ 0 ≤ 𝐶 ) ) |
| 239 |
154
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 𝐶 + - 𝐶 ) = 0 ) |
| 240 |
73
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 + 0 ) = 𝐶 ) |
| 241 |
240
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 𝐶 + 0 ) = 𝐶 ) |
| 242 |
238 239 241
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → if ( 0 ≤ - 𝐶 , ( 𝐶 + - 𝐶 ) , ( 𝐶 + 0 ) ) = if ( ¬ 0 ≤ 𝐶 , 0 , 𝐶 ) ) |
| 243 |
|
ifnot |
⊢ if ( ¬ 0 ≤ 𝐶 , 0 , 𝐶 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) |
| 244 |
242 243
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → if ( 0 ≤ - 𝐶 , ( 𝐶 + - 𝐶 ) , ( 𝐶 + 0 ) ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 245 |
224 244
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≠ 0 ) → ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 246 |
223 245
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 247 |
218 246
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 + if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) + ( 𝐶 + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 248 |
190 247
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 249 |
248
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 250 |
249 61
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐵 + 𝐶 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) ∈ MblFn ) |
| 251 |
5 29 171 42 250
|
mbfposadd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + if ( 0 ≤ ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) , 0 ) ) ) ∈ MblFn ) |
| 252 |
189 251
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) ) ∈ MblFn ) |
| 253 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 254 |
13 29 253
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) ) |
| 255 |
40 178 42 181 252 40 42 254 186
|
itgaddnclem1 |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) + ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) |
| 256 |
46 177 255
|
3eqtr3d |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) |
| 257 |
35 50
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 258 |
15 53 18 56 61 15 18 64 66
|
itgaddnclem1 |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) ) |
| 259 |
15 53
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
| 260 |
18 56
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ∈ ℂ ) |
| 261 |
259 260
|
addcld |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) ∈ ℂ ) |
| 262 |
258 261
|
eqeltrd |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ∈ ℂ ) |
| 263 |
40 178
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ∈ ℂ ) |
| 264 |
22 179 26 180 171 22 26 183 185
|
itgaddnclem1 |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) |
| 265 |
22 179
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
| 266 |
26 180
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ∈ ℂ ) |
| 267 |
265 266
|
addcld |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ∈ ℂ ) |
| 268 |
264 267
|
eqeltrd |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ∈ ℂ ) |
| 269 |
257 262 263 268
|
addsubeq4d |
⊢ ( 𝜑 → ( ( ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 ) = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 + ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ↔ ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) ) |
| 270 |
256 269
|
mpbid |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) ) |
| 271 |
258 264
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) + if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) d 𝑥 ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) − ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 272 |
259 260 265 266
|
addsub4d |
⊢ ( 𝜑 → ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 ) − ( ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 + ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) + ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 273 |
270 271 272
|
3eqtrd |
⊢ ( 𝜑 → ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) + ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 274 |
29 47
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ ( 𝐵 + 𝐶 ) , ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - ( 𝐵 + 𝐶 ) , - ( 𝐵 + 𝐶 ) , 0 ) d 𝑥 ) ) |
| 275 |
6 2
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) |
| 276 |
7 4
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) |
| 277 |
275 276
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) + ( ∫ 𝐴 if ( 0 ≤ 𝐶 , 𝐶 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) d 𝑥 ) ) ) |
| 278 |
273 274 277
|
3eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |