| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfposadd.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 2 |
|
mbfposadd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 3 |
|
mbfposadd.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 4 |
|
mbfposadd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 5 |
|
mbfposadd.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 8 |
2 6 7
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 9 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 10 |
4 6 9
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 11 |
8 10
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
| 12 |
11
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) : 𝐴 ⟶ ℝ ) |
| 13 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⊆ 𝐴 |
| 14 |
|
fssres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) : 𝐴 ⟶ ℝ ∧ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⊆ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) : { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⟶ ℝ ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) : { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⟶ ℝ ) |
| 16 |
|
inss2 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
| 17 |
|
resabs1 |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 19 |
|
elin |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 20 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 21 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) |
| 22 |
20 21
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
| 23 |
19 22
|
bitri |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
| 24 |
|
iftrue |
⊢ ( 0 ≤ 𝐵 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = 𝐵 ) |
| 25 |
|
iftrue |
⊢ ( 0 ≤ 𝐶 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = 𝐶 ) |
| 26 |
24 25
|
oveqan12d |
⊢ ( ( 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 27 |
26
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 28 |
23 27
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
| 29 |
28
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) |
| 30 |
|
inss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } |
| 31 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ⊆ 𝐴 |
| 32 |
30 31
|
sstri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 |
| 33 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑦 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 35 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 36 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 37 |
34 35 36
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 38 |
37
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 40 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } |
| 41 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
| 42 |
40 41
|
nfin |
⊢ Ⅎ 𝑥 ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 43 |
42
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 44 |
35
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 45 |
43 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 46 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
| 47 |
36
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 48 |
46 47
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
| 49 |
39 45 48
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 50 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 51 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 52 |
49 50 51
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 53 |
33 38 52
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 54 |
32 53
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 55 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐵 + 𝐶 ) |
| 57 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) |
| 58 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 + 𝐶 ) = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
| 59 |
56 57 58
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
| 60 |
59
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) |
| 62 |
57
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) |
| 63 |
43 62
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
| 64 |
58
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ( 𝐵 + 𝐶 ) ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ) |
| 65 |
46 64
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ) ) |
| 66 |
61 63 65
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) } |
| 67 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) } |
| 68 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) } |
| 69 |
66 67 68
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
| 70 |
55 60 69
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) ) |
| 71 |
32 70
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) |
| 72 |
29 54 71
|
3eqtr4i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 73 |
18 72
|
eqtri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 74 |
2
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ) |
| 75 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 76 |
74 75
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 77 |
76
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 0 [,) +∞ ) } ) |
| 78 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 79 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 80 |
|
0ltpnf |
⊢ 0 < +∞ |
| 81 |
|
snunioo |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → ( { 0 } ∪ ( 0 (,) +∞ ) ) = ( 0 [,) +∞ ) ) |
| 82 |
78 79 80 81
|
mp3an |
⊢ ( { 0 } ∪ ( 0 (,) +∞ ) ) = ( 0 [,) +∞ ) |
| 83 |
82
|
imaeq2i |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 [,) +∞ ) ) |
| 84 |
|
imaundi |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) |
| 85 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 86 |
85
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 [,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 0 [,) +∞ ) } |
| 87 |
83 84 86
|
3eqtr3ri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 0 [,) +∞ ) } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) |
| 88 |
77 87
|
eqtrdi |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ) |
| 89 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 90 |
|
mbfimasn |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ∧ 0 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∈ dom vol ) |
| 91 |
6 90
|
mp3an3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∈ dom vol ) |
| 92 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) |
| 93 |
|
unmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∈ dom vol ∧ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 94 |
91 92 93
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 95 |
1 89 94
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 96 |
88 95
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∈ dom vol ) |
| 97 |
4
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐶 ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ) |
| 98 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 99 |
97 98
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐶 ↔ 𝐶 ∈ ( 0 [,) +∞ ) ) ) |
| 100 |
99
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( 0 [,) +∞ ) } ) |
| 101 |
82
|
imaeq2i |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 [,) +∞ ) ) |
| 102 |
|
imaundi |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) |
| 103 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 104 |
103
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 [,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( 0 [,) +∞ ) } |
| 105 |
101 102 104
|
3eqtr3ri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( 0 [,) +∞ ) } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) |
| 106 |
100 105
|
eqtrdi |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ) |
| 107 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) |
| 108 |
|
mbfimasn |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ∧ 0 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∈ dom vol ) |
| 109 |
6 108
|
mp3an3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∈ dom vol ) |
| 110 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) |
| 111 |
|
unmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∈ dom vol ∧ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 112 |
109 110 111
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 113 |
3 107 112
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 114 |
106 113
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∈ dom vol ) |
| 115 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∈ dom vol ∧ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∈ dom vol ) → ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
| 116 |
96 114 115
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
| 117 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ∧ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
| 118 |
5 116 117
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
| 119 |
73 118
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
| 120 |
|
inss2 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
| 121 |
|
resabs1 |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
| 122 |
120 121
|
ax-mp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 123 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵 ) ) |
| 124 |
123 21
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
| 125 |
|
elin |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 126 |
|
anandi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
| 127 |
124 125 126
|
3bitr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) |
| 128 |
|
iffalse |
⊢ ( ¬ 0 ≤ 𝐵 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = 0 ) |
| 129 |
128 25
|
oveqan12d |
⊢ ( ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 0 + 𝐶 ) ) |
| 130 |
129
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 0 + 𝐶 ) ) |
| 131 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 132 |
131
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 133 |
132
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 134 |
130 133
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = 𝐶 ) |
| 135 |
127 134
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = 𝐶 ) |
| 136 |
135
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) ) |
| 137 |
|
inss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } |
| 138 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ⊆ 𝐴 |
| 139 |
137 138
|
sstri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 |
| 140 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 141 |
37
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 142 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 143 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } |
| 144 |
143 41
|
nfin |
⊢ Ⅎ 𝑥 ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 145 |
144
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 146 |
145 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 147 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
| 148 |
147 47
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
| 149 |
142 146 148
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 150 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 151 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 152 |
149 150 151
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 153 |
140 141 152
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 154 |
139 153
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 155 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 156 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
| 157 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 158 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 159 |
156 157 158
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 160 |
159
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 161 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) |
| 162 |
157
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 163 |
145 162
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 164 |
158
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝐶 ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 165 |
147 164
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
| 166 |
161 163 165
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) } |
| 167 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) } |
| 168 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) } |
| 169 |
166 167 168
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 170 |
155 160 169
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) ) |
| 171 |
139 170
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) |
| 172 |
136 154 171
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
| 173 |
122 172
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
| 174 |
85
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( -∞ (,) 0 ) } |
| 175 |
|
elioomnf |
⊢ ( 0 ∈ ℝ* → ( 𝐵 ∈ ( -∞ (,) 0 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) ) |
| 176 |
78 175
|
ax-mp |
⊢ ( 𝐵 ∈ ( -∞ (,) 0 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) |
| 177 |
2
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 0 ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) ) |
| 178 |
|
ltnle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 179 |
2 6 178
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 180 |
177 179
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ↔ ¬ 0 ≤ 𝐵 ) ) |
| 181 |
176 180
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( -∞ (,) 0 ) ↔ ¬ 0 ≤ 𝐵 ) ) |
| 182 |
181
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( -∞ (,) 0 ) } = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) |
| 183 |
174 182
|
eqtrid |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) |
| 184 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 185 |
1 89 184
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 186 |
183 185
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∈ dom vol ) |
| 187 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∈ dom vol ∧ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∈ dom vol ) → ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
| 188 |
186 114 187
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
| 189 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
| 190 |
3 188 189
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
| 191 |
173 190
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
| 192 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 193 |
|
dfrab3ss |
⊢ ( 𝐴 ⊆ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 194 |
192 193
|
ax-mp |
⊢ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 195 |
|
rabxm |
⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) |
| 196 |
195
|
ineq1i |
⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) = ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 197 |
|
indir |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) = ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∪ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
| 198 |
194 196 197
|
3eqtrri |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∪ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
| 199 |
198
|
a1i |
⊢ ( 𝜑 → ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∪ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
| 200 |
15 119 191 199
|
mbfres2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ MblFn ) |
| 201 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐶 ) ) |
| 202 |
|
iffalse |
⊢ ( ¬ 0 ≤ 𝐶 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = 0 ) |
| 203 |
202
|
oveq2d |
⊢ ( ¬ 0 ≤ 𝐶 → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + 0 ) ) |
| 204 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℂ ) |
| 205 |
204
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 206 |
203 205
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 0 ≤ 𝐶 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 207 |
206
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐶 ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 208 |
201 207
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 209 |
208
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 210 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 |
| 211 |
|
resmpt |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 212 |
37
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
| 213 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 214 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } |
| 215 |
214
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } |
| 216 |
215 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 217 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ) |
| 218 |
217 47
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↔ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
| 219 |
213 216 218
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 220 |
|
df-mpt |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 221 |
|
df-mpt |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
| 222 |
219 220 221
|
3eqtr4i |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 223 |
211 212 222
|
3eqtr4g |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 224 |
210 223
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 225 |
|
resmpt |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 226 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
| 227 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
| 228 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 229 |
226 227 228
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 230 |
229
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
| 231 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 232 |
227
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
| 233 |
215 232
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 234 |
228
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 235 |
217 234
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↔ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) |
| 236 |
231 233 235
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } |
| 237 |
|
df-mpt |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } |
| 238 |
|
df-mpt |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } |
| 239 |
236 237 238
|
3eqtr4i |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 240 |
225 230 239
|
3eqtr4g |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 241 |
210 240
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 242 |
209 224 241
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ) |
| 243 |
2 1
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 244 |
103
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( -∞ (,) 0 ) } |
| 245 |
|
elioomnf |
⊢ ( 0 ∈ ℝ* → ( 𝐶 ∈ ( -∞ (,) 0 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ) ) |
| 246 |
78 245
|
ax-mp |
⊢ ( 𝐶 ∈ ( -∞ (,) 0 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ) |
| 247 |
4
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 < 0 ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ) ) |
| 248 |
|
ltnle |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
| 249 |
4 6 248
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
| 250 |
247 249
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ↔ ¬ 0 ≤ 𝐶 ) ) |
| 251 |
246 250
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ∈ ( -∞ (,) 0 ) ↔ ¬ 0 ≤ 𝐶 ) ) |
| 252 |
251
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( -∞ (,) 0 ) } = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
| 253 |
244 252
|
eqtrid |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
| 254 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 255 |
3 107 254
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 256 |
253 255
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∈ dom vol ) |
| 257 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∈ dom vol ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ∈ MblFn ) |
| 258 |
243 256 257
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ∈ MblFn ) |
| 259 |
242 258
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ∈ MblFn ) |
| 260 |
|
rabxm |
⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
| 261 |
260
|
eqcomi |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = 𝐴 |
| 262 |
261
|
a1i |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = 𝐴 ) |
| 263 |
12 200 259 262
|
mbfres2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ MblFn ) |