Step |
Hyp |
Ref |
Expression |
1 |
|
mbfposadd.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
2 |
|
mbfposadd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
mbfposadd.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
4 |
|
mbfposadd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
5 |
|
mbfposadd.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
6 |
|
0re |
⊢ 0 ∈ ℝ |
7 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
8 |
2 6 7
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
9 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
10 |
4 6 9
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
11 |
8 10
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
12 |
11
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) : 𝐴 ⟶ ℝ ) |
13 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⊆ 𝐴 |
14 |
|
fssres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) : 𝐴 ⟶ ℝ ∧ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⊆ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) : { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⟶ ℝ ) |
15 |
12 13 14
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) : { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ⟶ ℝ ) |
16 |
|
inss2 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
17 |
|
resabs1 |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
18 |
16 17
|
ax-mp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
19 |
|
elin |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
20 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
21 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) |
22 |
20 21
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
23 |
19 22
|
bitri |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
24 |
|
iftrue |
⊢ ( 0 ≤ 𝐵 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = 𝐵 ) |
25 |
|
iftrue |
⊢ ( 0 ≤ 𝐶 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = 𝐶 ) |
26 |
24 25
|
oveqan12d |
⊢ ( ( 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
27 |
26
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
28 |
23 27
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝐵 + 𝐶 ) ) |
29 |
28
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) |
30 |
|
inss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } |
31 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ⊆ 𝐴 |
32 |
30 31
|
sstri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 |
33 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑦 ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
35 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
36 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
37 |
34 35 36
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
38 |
37
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
40 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } |
41 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
42 |
40 41
|
nfin |
⊢ Ⅎ 𝑥 ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
43 |
42
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
44 |
35
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
45 |
43 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
46 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
47 |
36
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
48 |
46 47
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
49 |
39 45 48
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
50 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
51 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
52 |
49 50 51
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
53 |
33 38 52
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
54 |
32 53
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
55 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ) |
56 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐵 + 𝐶 ) |
57 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) |
58 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 + 𝐶 ) = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
59 |
56 57 58
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
60 |
59
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
61 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) |
62 |
57
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) |
63 |
43 62
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
64 |
58
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ( 𝐵 + 𝐶 ) ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ) |
65 |
46 64
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) ) ) |
66 |
61 63 65
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) } |
67 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( 𝐵 + 𝐶 ) ) } |
68 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) } |
69 |
66 67 68
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 + 𝐶 ) ) |
70 |
55 60 69
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) ) |
71 |
32 70
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( 𝐵 + 𝐶 ) ) |
72 |
29 54 71
|
3eqtr4i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
73 |
18 72
|
eqtri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
74 |
2
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ) |
75 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
76 |
74 75
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
77 |
76
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 0 [,) +∞ ) } ) |
78 |
|
0xr |
⊢ 0 ∈ ℝ* |
79 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
80 |
|
0ltpnf |
⊢ 0 < +∞ |
81 |
|
snunioo |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → ( { 0 } ∪ ( 0 (,) +∞ ) ) = ( 0 [,) +∞ ) ) |
82 |
78 79 80 81
|
mp3an |
⊢ ( { 0 } ∪ ( 0 (,) +∞ ) ) = ( 0 [,) +∞ ) |
83 |
82
|
imaeq2i |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 [,) +∞ ) ) |
84 |
|
imaundi |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) |
85 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
86 |
85
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 [,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 0 [,) +∞ ) } |
87 |
83 84 86
|
3eqtr3ri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 0 [,) +∞ ) } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) |
88 |
77 87
|
eqtrdi |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ) |
89 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
90 |
|
mbfimasn |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ∧ 0 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∈ dom vol ) |
91 |
6 90
|
mp3an3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∈ dom vol ) |
92 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) |
93 |
|
unmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∈ dom vol ∧ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
94 |
91 92 93
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
95 |
1 89 94
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
96 |
88 95
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∈ dom vol ) |
97 |
4
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐶 ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ) |
98 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
99 |
97 98
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐶 ↔ 𝐶 ∈ ( 0 [,) +∞ ) ) ) |
100 |
99
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( 0 [,) +∞ ) } ) |
101 |
82
|
imaeq2i |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 [,) +∞ ) ) |
102 |
|
imaundi |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) |
103 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
104 |
103
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 [,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( 0 [,) +∞ ) } |
105 |
101 102 104
|
3eqtr3ri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( 0 [,) +∞ ) } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) |
106 |
100 105
|
eqtrdi |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ) |
107 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) |
108 |
|
mbfimasn |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ∧ 0 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∈ dom vol ) |
109 |
6 108
|
mp3an3 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∈ dom vol ) |
110 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) |
111 |
|
unmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∈ dom vol ∧ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
112 |
109 110 111
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
113 |
3 107 112
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ { 0 } ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
114 |
106 113
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∈ dom vol ) |
115 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∈ dom vol ∧ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∈ dom vol ) → ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
116 |
96 114 115
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
117 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ∧ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
118 |
5 116 117
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
119 |
73 118
|
eqeltrid |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
120 |
|
inss2 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
121 |
|
resabs1 |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
122 |
120 121
|
ax-mp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
123 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵 ) ) |
124 |
123 21
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
125 |
|
elin |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
126 |
|
anandi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
127 |
124 125 126
|
3bitr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) |
128 |
|
iffalse |
⊢ ( ¬ 0 ≤ 𝐵 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = 0 ) |
129 |
128 25
|
oveqan12d |
⊢ ( ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 0 + 𝐶 ) ) |
130 |
129
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 0 + 𝐶 ) ) |
131 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
132 |
131
|
addid2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 + 𝐶 ) = 𝐶 ) |
133 |
132
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) → ( 0 + 𝐶 ) = 𝐶 ) |
134 |
130 133
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶 ) ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = 𝐶 ) |
135 |
127 134
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = 𝐶 ) |
136 |
135
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) ) |
137 |
|
inss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } |
138 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ⊆ 𝐴 |
139 |
137 138
|
sstri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 |
140 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
141 |
37
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
142 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
143 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } |
144 |
143 41
|
nfin |
⊢ Ⅎ 𝑥 ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
145 |
144
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
146 |
145 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
147 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↔ 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
148 |
147 47
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
149 |
142 146 148
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
150 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
151 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
152 |
149 150 151
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
153 |
140 141 152
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
154 |
139 153
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
155 |
|
resmpt |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
156 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
157 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
158 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
159 |
156 157 158
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
160 |
159
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
161 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) |
162 |
157
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
163 |
145 162
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
164 |
158
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝐶 ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
165 |
147 164
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
166 |
161 163 165
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) } |
167 |
|
df-mpt |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = 𝐶 ) } |
168 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) } |
169 |
166 167 168
|
3eqtr4i |
⊢ ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) = ( 𝑦 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
170 |
155 160 169
|
3eqtr4g |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) ) |
171 |
139 170
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↦ 𝐶 ) |
172 |
136 154 171
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
173 |
122 172
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ) |
174 |
85
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( -∞ (,) 0 ) } |
175 |
|
elioomnf |
⊢ ( 0 ∈ ℝ* → ( 𝐵 ∈ ( -∞ (,) 0 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) ) |
176 |
78 175
|
ax-mp |
⊢ ( 𝐵 ∈ ( -∞ (,) 0 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) |
177 |
2
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 0 ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) ) |
178 |
|
ltnle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
179 |
2 6 178
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
180 |
177 179
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ↔ ¬ 0 ≤ 𝐵 ) ) |
181 |
176 180
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( -∞ (,) 0 ) ↔ ¬ 0 ≤ 𝐵 ) ) |
182 |
181
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( -∞ (,) 0 ) } = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) |
183 |
174 182
|
syl5eq |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) |
184 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
185 |
1 89 184
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
186 |
183 185
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∈ dom vol ) |
187 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∈ dom vol ∧ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∈ dom vol ) → ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
188 |
186 114 187
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) |
189 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ dom vol ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
190 |
3 188 189
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
191 |
173 190
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ↾ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) ∈ MblFn ) |
192 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
193 |
|
dfrab3ss |
⊢ ( 𝐴 ⊆ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
194 |
192 193
|
ax-mp |
⊢ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
195 |
|
rabxm |
⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) |
196 |
195
|
ineq1i |
⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) = ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
197 |
|
indir |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ) ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) = ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∪ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) |
198 |
194 196 197
|
3eqtrri |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∪ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } |
199 |
198
|
a1i |
⊢ ( 𝜑 → ( ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∪ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵 } ∩ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ) = { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) |
200 |
15 119 191 199
|
mbfres2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ) ∈ MblFn ) |
201 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐶 ) ) |
202 |
|
iffalse |
⊢ ( ¬ 0 ≤ 𝐶 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = 0 ) |
203 |
202
|
oveq2d |
⊢ ( ¬ 0 ≤ 𝐶 → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + 0 ) ) |
204 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℂ ) |
205 |
204
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
206 |
203 205
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 0 ≤ 𝐶 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
207 |
206
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐶 ) ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
208 |
201 207
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
209 |
208
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
210 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 |
211 |
|
resmpt |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
212 |
37
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
213 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
214 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } |
215 |
214
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } |
216 |
215 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
217 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ) |
218 |
217 47
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↔ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) ) |
219 |
213 216 218
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
220 |
|
df-mpt |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
221 |
|
df-mpt |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) } |
222 |
219 220 221
|
3eqtr4i |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
223 |
211 212 222
|
3eqtr4g |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
224 |
210 223
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
225 |
|
resmpt |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
226 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
227 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
228 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
229 |
226 227 228
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
230 |
229
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
231 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
232 |
227
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) |
233 |
215 232
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
234 |
228
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ↔ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
235 |
217 234
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↔ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) |
236 |
231 233 235
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } |
237 |
|
df-mpt |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } |
238 |
|
df-mpt |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∧ 𝑧 = ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) } |
239 |
236 237 238
|
3eqtr4i |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ ⦋ 𝑦 / 𝑥 ⦌ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
240 |
225 230 239
|
3eqtr4g |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
241 |
210 240
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
242 |
209 224 241
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ) |
243 |
2 1
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
244 |
103
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( -∞ (,) 0 ) } |
245 |
|
elioomnf |
⊢ ( 0 ∈ ℝ* → ( 𝐶 ∈ ( -∞ (,) 0 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ) ) |
246 |
78 245
|
ax-mp |
⊢ ( 𝐶 ∈ ( -∞ (,) 0 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ) |
247 |
4
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 < 0 ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ) ) |
248 |
|
ltnle |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
249 |
4 6 248
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 < 0 ↔ ¬ 0 ≤ 𝐶 ) ) |
250 |
247 249
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 ∈ ℝ ∧ 𝐶 < 0 ) ↔ ¬ 0 ≤ 𝐶 ) ) |
251 |
246 250
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ∈ ( -∞ (,) 0 ) ↔ ¬ 0 ≤ 𝐶 ) ) |
252 |
251
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ ( -∞ (,) 0 ) } = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
253 |
244 252
|
syl5eq |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
254 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
255 |
3 107 254
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
256 |
253 255
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∈ dom vol ) |
257 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ∈ dom vol ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ∈ MblFn ) |
258 |
243 256 257
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ∈ MblFn ) |
259 |
242 258
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ↾ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) ∈ MblFn ) |
260 |
|
rabxm |
⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) |
261 |
260
|
eqcomi |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = 𝐴 |
262 |
261
|
a1i |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶 } ) = 𝐴 ) |
263 |
12 200 259 262
|
mbfres2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ MblFn ) |