| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfpos.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 2 |
|
mbfpos.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 3 |
|
c0ex |
⊢ 0 ∈ V |
| 4 |
3
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 8 |
7
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 9 |
6 1 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 10 |
5 9
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 0 ≤ 𝐵 ) ) |
| 11 |
10 9 5
|
ifbieq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 13 |
|
0re |
⊢ 0 ∈ ℝ |
| 14 |
13
|
fconst6 |
⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { 0 } ) : 𝐴 ⟶ ℝ ) |
| 16 |
2 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 17 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 18 |
|
mbfconst |
⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 20 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 24 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 25 |
22 23 24
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 26 |
25 24 22
|
nfif |
⊢ Ⅎ 𝑥 if ( ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 29 |
27 28
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ) |
| 30 |
29 28 27
|
ifbieq12d |
⊢ ( 𝑥 = 𝑦 → if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) = if ( ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) ) |
| 31 |
21 26 30
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑦 ) ) ) |
| 32 |
15 19 20 2 31
|
mbfmax |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) , ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 33 |
12 32
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |